• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.026 seconds

A Novel Chenodeoxycholic Derivative HS-1200 Induces Apoptosis in Human HT-29 Colon Cancer Cells (인체 대장암 세포주(HT-29)에서 담즙산 합성유도체(HS-1200)의 세포 사망 기전)

  • Oh Sin Geun;Yang Kwang Mo;Hur Won Joo;Yoo Young Hyun;Suh Hong Suk;Lee Hyung Sik
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2002
  • Purpose : To investigate the growth inhibitory effects, and the underlying mechanism of human colon cancer cell (HT-29) death, induced by a new synthetic bile acid derivative (HS-1200). Materials and Methods : Human colon cancer cells (HT-29), in exponential growth phase, were treated with various concentrations of a new synthetic bile acid derivative (HS-1200). The growth inhibitory effects on HT-29 cells were examined using a frypan blue exclusion assay. The extent of apoptosis was determined using agarose gel electrophoresis, TUNEL assays and Hoechst staining. The apoptotic cell death was also confirmed by Western blotting of PARP, caspase-3 and DNA fragmentation factor (DFF) analysis. To investigate the involvement of mitochondria, we employed immunofluorescent staining of cytochrome c and mitochondrial membrane potential analyses. Results : The dose required for the half maximal inhibition $(IC_{50})$ of the HT-29 cell growth was $100\~150\;{\mu}M$ of HS-1200. Several changes, associated with the apoptosis of the HT-29 cells, were reveal by the agarose gel eletrophoresis, TUNEL assays and Hoechst staining, following their treatment with $100\;{\mu}M$ of HS-1200. HS-1200 treatment also induced caspase-3, PARP and DFF degradations, and the western blotting showed the processed caspase-3 p20, PARP p85 and DFF p30 and p11 cleaved products. Mitochondrial events were also demonstrated. The cytochrome c staining indicated that cytochrome c had been released from the mitochondria in the HS-1200 treated cells. The mitochondrial membrane potential $(\Delta\Psi_m)$ was also prominently decreased in the HS-1200 treated cells. Conclusion : These findings suggest that the HS-1200 - induced apoptosis of human colon cancer cells (HT-29) is mediated via caspase and mitochondrial pathways.

Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials

  • Kim, Il-Woung;Sun, Won Suk;Yun, Bong-Sik;Kim, Na-Ri;Min, Dongsun;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.124-134
    • /
    • 2013
  • The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.

Effects of Surface Characterization of γAl2O3 Particles by Aging in the Sol Preparation (졸 합성시 숙성이 γAl2O3 입자의 표면특성에 미치는 영향)

  • Yoo, Seung-Joon;Kwak, Dong-Heui;Kim, Hyeong-Gi;Hwang, Un-Yeon;Park, Hyung-Sang;Yoon, Ho-Sung;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.545-549
    • /
    • 2008
  • The surface characteristics of calcined ${\gamma}-Al_2O_3$ particles as well as ${\gamma}-AlO$(OH) sol particles were controlled by aging in the boehmite sol preparation. As a result of the study, the IEPs of ${\gamma}-AlO$(OH) particles were decreased from pH 9.25 to pH 8.70 and those of the calcined ${\gamma}-Al_2O_3$ particles were decreased from pH 9.90 to pH 8.86 by the increase of the aging times. As a result of the acidic and basic characterization of the calcined ${\gamma}-Al_2O_3$ particles by the aging, the amount of acid sites was decreased from 0.1367 mmol/g to 0.0783 mmol/g by the increase of the aging times and Hammett acidity, $H_o$ was showed the acidic strength of 4.8 or above. On the other hand, the amount of basic sites was decreased from 0.4399 mmol/g to 0.3074 mmol/g by the increase of the aging times. Based on these results, we proposed the fact that the aging step in the sol-gel process was an important step to control the surface characterization of ${\gamma}-Al_2O_3$ particles including acidity and basicity.

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes (작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구)

  • Kim, Bora;Song, Suil;Lee, Hak Soo;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2014
  • The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employing multi-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined with using EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in the $TiO_2$-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5% compared to the $TiO_2$ only working electrode. The higher light conversion efficiency may attribut to the high electrical conductivity of MWCNT in $TiO_2$-MWCNT composite which improves the electron transport in the working electrode. However, higher amount of MWCNT than 0.1 wt% in the $TiO_2$-MWCNT composite decreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light by MWCNT and to the decreased adsorption of dye onto $TiO_2$. The MWCNT employed counter electrode exhibited much lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counter electrode showed similar in light conversion efficiency to that of Pt-counter electrode.

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF

Size-controlled synthesis of silicon oxide nanoparticles and the application as anode materials in lithium-ion batteries (실리콘 산화물 나노입자의 크기 제어 합성 및 리튬이온전지 음극재로의 적용)

  • Jeong-Yun Yang;Eun Seok;Goo-Hwan Jeong
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.5
    • /
    • pp.425-431
    • /
    • 2024
  • As demand in the electric vehicle market increases, the development of high capacity, high energy density lithium-ion batteries (LIBs) is required. Silicon has a extremely high theoretical capacity of 4200 mAh/g, but low cycle life and structural instability due to high volume expansion during charging and discharging are critical issue to solve. A reduced silicon oxide has also a high theoretical capacity of 2500 mAh/g and recently studied extensively for its low-cost, superior cycle life, and structural stability. In this study, we first synstheized SiO2 particles by sol-gel method using tetraethyl orthosilicate (TEOS) precursor. The SiO2 particle size was controlled with an average particle size of 300-600 nm by the addition amount of TEOS, NH3, and H2O. The synthesized SiO2 particles were reduced to SiOx through the magnesiothermic reduction reaction (MRR), and electrochemical characteristics were evaluated according to the particle size of SiOx. For electrochemical characterization, SiOx (10 wt.%) was mixed with graphite, and 2032 half cells were fabricated to obtain charge-discharge curve, cycle performance, rate performance, and electrochemical impedance spectroscopy curves. As a result, the mean size of SiOx particle decreases from 600 to 300 nm, the initial discharge capacity increases from 459.9 to 556.5 mAh/g with the single capacity from 1359.4 to 2325.3 mAh/g, respectively. Finally, the present result shows the availability of MRR process to obtain reduced silicon oxide particles and sized dependent electrochemical properties to develop high capacity and high energy density LIBs.

Preparation of Adhesive Sheet from Several Types of Crosslinking Agents and Their Adhesion Characteristics with Various Substrates (가교제 종류에 따른 점착시트 제조 및 다양한 피착재에서의 점착 특성 연구)

  • Hyun ji Kim;Seung In Kang;Ho Kyoon Jeon;Ji Eun Lee;Hyun Ju Park;Jong Hwan Lee;Dong Gi Seong
    • Journal of Adhesion and Interface
    • /
    • v.25 no.3
    • /
    • pp.93-99
    • /
    • 2024
  • In this study, acrylic pressure sensitive adhesive (PSA) using butyl acrylate and butyl methacrylate as basic monomers and functional monomer such as acrylic acid was synthesized. Adhesive sheet was prepared by using three types of crosslinking agents (isocyanate, amine, aziridine) containing a functional group reacting with carboxyl group. The correlation between the PSA and substrate was studied by evaluation the peel strength according to the four substrates (polypropylene, acrylonitrile butadiene styrene, stainless steel, and glass). The polarity of the PSA increases with the amount of the crosslinking agent, and the surface energy also increases due to the influence of the crosslinking agent. Regardless of the type of crosslinking agent, the tack decreases as the content increased, and it was confirmed by the gel fraction measurement that the type of crosslinking agent had influence on the crosslinking. As a result of peel strength evaluation, excellent adhesion characteristics were expressed for all substrates when amine crosslinking20240809 agent was used.