DOI QR코드

DOI QR Code

Size-controlled synthesis of silicon oxide nanoparticles and the application as anode materials in lithium-ion batteries

실리콘 산화물 나노입자의 크기 제어 합성 및 리튬이온전지 음극재로의 적용

  • Jeong-Yun Yang (Interdisciplinary Program in Advanced Functional Materials and Devices Development, Graduate School of Kangwon National University) ;
  • Eun Seok (Interdisciplinary Program in Advanced Functional Materials and Devices Development, Graduate School of Kangwon National University) ;
  • Goo-Hwan Jeong (Interdisciplinary Program in Advanced Functional Materials and Devices Development, Graduate School of Kangwon National University)
  • 양정윤 (강원대학교 대학원 고기능 소자 및 소재 기술 고도화 협동과정) ;
  • 석은 (강원대학교 대학원 고기능 소자 및 소재 기술 고도화 협동과정) ;
  • 정구환 (강원대학교 대학원 고기능 소자 및 소재 기술 고도화 협동과정)
  • Received : 2024.10.01
  • Accepted : 2024.10.07
  • Published : 2024.10.31

Abstract

As demand in the electric vehicle market increases, the development of high capacity, high energy density lithium-ion batteries (LIBs) is required. Silicon has a extremely high theoretical capacity of 4200 mAh/g, but low cycle life and structural instability due to high volume expansion during charging and discharging are critical issue to solve. A reduced silicon oxide has also a high theoretical capacity of 2500 mAh/g and recently studied extensively for its low-cost, superior cycle life, and structural stability. In this study, we first synstheized SiO2 particles by sol-gel method using tetraethyl orthosilicate (TEOS) precursor. The SiO2 particle size was controlled with an average particle size of 300-600 nm by the addition amount of TEOS, NH3, and H2O. The synthesized SiO2 particles were reduced to SiOx through the magnesiothermic reduction reaction (MRR), and electrochemical characteristics were evaluated according to the particle size of SiOx. For electrochemical characterization, SiOx (10 wt.%) was mixed with graphite, and 2032 half cells were fabricated to obtain charge-discharge curve, cycle performance, rate performance, and electrochemical impedance spectroscopy curves. As a result, the mean size of SiOx particle decreases from 600 to 300 nm, the initial discharge capacity increases from 459.9 to 556.5 mAh/g with the single capacity from 1359.4 to 2325.3 mAh/g, respectively. Finally, the present result shows the availability of MRR process to obtain reduced silicon oxide particles and sized dependent electrochemical properties to develop high capacity and high energy density LIBs.

Keywords

References

  1. M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries, Advanced Materials, 30 (2018) 1800561.
  2. P.U. Nzereogu, A.D. Omah, F.I. Ezema, E.I. Iwuoha, A.C. Nwanya, Anode materials for lithium-ion batteries: a review, Applied Surface Science Advances, 9 (2022) 100233.
  3. M.H. Hossain, M.A. Chowdhury, N. Hossain, Md.A. Islam, Md.H. Mobarak, Advances of lithium-ion batteries anode materials - a review, Chemical Engineering Journal Advances, 16 (2023) 100569.
  4. J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 1-16.
  5. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy & Environmental Science, 4 (2011) 2682-2699.
  6. P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries, Journal of Materials Chemistry A, 3 (2015) 2454-2484.
  7. N. Mahmood, T. Tang, Y. Hou, Nanostr-uctured anode materials for lithium ion batteries: progress, challenge and perspective, Advanced Energy Materials, 6 (2016) 1600374.
  8. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review, Advanced Energy Materials, 4 (2014) 1300882.
  9. S. Chae, S. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries, Angewandte Chemie International Edition, 59 (2020) 110-135.
  10. K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao, M. Cai, Z. Chen, Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications, Small, 14 (2018) 1702737.
  11. X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries, Science China Materials, 62 (2019) 1515-1536.
  12. X. Zuo, J. Zhu, P.M. Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review, Nano Energy, 31 (2017) 113-143.
  13. M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale, 8 (2016) 74-103.
  14. W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, D. Cui, Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives, Journal of Materials Chemistry A, 5 (2017) 19521-19540.
  15. J. Wan, A.F. Kaplan, J. Zheng, X. Han, Y. Chen, N.J. Weadock, N. Faenza, S. Lacey, T. Li, J. Guo, L. Hu, Two dimensional silicon nanowalls for lithium ion batteries, Journal of Materials Chemistry A, 2 (2014) 6051-6057.
  16. C.K. Chan, H. Peng, G. Liu, K. Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3 (2008) 31-35.
  17. J.W. Kim, J.H. Ryu, K.T. Lee, S.M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, Journal of Power Sources, 147 (2005) 227-233.
  18. X. Zhu, B. Liu, J. Shao, Q. Zhang, Y. Wan, C. Zhong, J. Lu, Fundamental mechanisms and promising strategies for the industrial application of SiOx anode, Advanced Functional Materials, 33 (2023) 2213363.
  19. R. Wang, H. Li, Y. Wu, H. Li, B. Zhong, Y. Sun, Z. Wu, X. Guo, How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety, Advanced Energy Materials, 12 (2022) 2202342.
  20. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Silicon oxides: a promising family of anode materials for lithium-ion batteries, Chemical Society Reviews, 48 (2019) 285-309.
  21. Z. Li, M. Du, X. Guo, D. Zhang, Q. Wang, H. Sun, B. Wang, Y.A. Wu, Research progress of SiOx-based anode materials for lithium-ion batteries, Chemical Engineering Journal, 473 (2023) 145294.
  22. J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond, Journal of Materials Chemistry A, 6 (2018) 18329-18730.
  23. B.G. Gribov, K.V. Zinov'ev, Preparation of high-purity silicon for solar cells, Inorganic Materials, 39 (2003) 653-662.
  24. E.K. Richman, C.B. Kang, T. Brezesinski, S.H. Tolbert, Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films, Nano Letters, 8 (2008) 3075-3079.
  25. X. Liu, Y. Gao, R. Jim, H. Luo, P. Peng, Y. Liu, Scalable synthesis of Si nanostructures by low-temperature magnesiothermic reduction of silica for application in lithium ion batteries, Nano Energy, 4 (2014) 31-38.
  26. Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, A.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy III, C.J. Summers, M. Liu, K.H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 446 (2007) 172-175.
  27. H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Advanced Energy Materials, 1 (2011) 1036-1039.