A Novel Chenodeoxycholic Derivative HS-1200 Induces Apoptosis in Human HT-29 Colon Cancer Cells

인체 대장암 세포주(HT-29)에서 담즙산 합성유도체(HS-1200)의 세포 사망 기전

  • Oh Sin Geun (Department of Radiation Oncology, College of Medicine, Dong A University) ;
  • Yang Kwang Mo (Department of Radiation Oncology, College of Medicine, Dong A University) ;
  • Hur Won Joo (Department of Radiation Oncology, College of Medicine, Dong A University) ;
  • Yoo Young Hyun (Department of Anatomy, and Cell Biology, College of Medicine, Dong A University) ;
  • Suh Hong Suk (Department of Chemistry, Pusan National University) ;
  • Lee Hyung Sik (Department of Radiation Oncology, College of Medicine, Dong A University)
  • 오신근 (동아대학교 의과대학 치료방사선과학교실) ;
  • 양광모 (동아대학교 의과대학 치료방사선과학교실) ;
  • 허원주 (동아대학교 의과대학 치료방사선과학교실) ;
  • 유영현 (동아대학교 의과대학 해부학교실) ;
  • 서홍석 (부산대학교 자연대학 화학과) ;
  • 이형식 (동아대학교 의과대학 치료방사선과학교실)
  • Published : 2002.12.01

Abstract

Purpose : To investigate the growth inhibitory effects, and the underlying mechanism of human colon cancer cell (HT-29) death, induced by a new synthetic bile acid derivative (HS-1200). Materials and Methods : Human colon cancer cells (HT-29), in exponential growth phase, were treated with various concentrations of a new synthetic bile acid derivative (HS-1200). The growth inhibitory effects on HT-29 cells were examined using a frypan blue exclusion assay. The extent of apoptosis was determined using agarose gel electrophoresis, TUNEL assays and Hoechst staining. The apoptotic cell death was also confirmed by Western blotting of PARP, caspase-3 and DNA fragmentation factor (DFF) analysis. To investigate the involvement of mitochondria, we employed immunofluorescent staining of cytochrome c and mitochondrial membrane potential analyses. Results : The dose required for the half maximal inhibition $(IC_{50})$ of the HT-29 cell growth was $100\~150\;{\mu}M$ of HS-1200. Several changes, associated with the apoptosis of the HT-29 cells, were reveal by the agarose gel eletrophoresis, TUNEL assays and Hoechst staining, following their treatment with $100\;{\mu}M$ of HS-1200. HS-1200 treatment also induced caspase-3, PARP and DFF degradations, and the western blotting showed the processed caspase-3 p20, PARP p85 and DFF p30 and p11 cleaved products. Mitochondrial events were also demonstrated. The cytochrome c staining indicated that cytochrome c had been released from the mitochondria in the HS-1200 treated cells. The mitochondrial membrane potential $(\Delta\Psi_m)$ was also prominently decreased in the HS-1200 treated cells. Conclusion : These findings suggest that the HS-1200 - induced apoptosis of human colon cancer cells (HT-29) is mediated via caspase and mitochondrial pathways.

목적 : 인체 대장암 세포주인 HT-29에 새로운 CDCA 합성유도체인 HS-1200을 처치하여 암세포의 증식에 미치는 영향과 아포토시스 유도 활성을 관찰하고 기전을 연구하고자 하였다. 대상 및 방법 : 지수증식기의 HT-29 세포에 다양한 농도의 CDCA 합성유도체인 HS-1200을 투약하여 $IC_{50}$를 구하였다. $IC_{50}$의 농도를 참조하여, 세포 생존능의 실험은 frypan blue exclusion assay를 이용하였고, 아포토시스 유도에 관한 관찰 실험은 agarose gel electrophoresis, TUNEL assay 및 Hoechst staining을 이용하였다. Western blotting을 통한 PARP [poly (ADP-ribose) polymerasel, caspase-3 및 DFF (DNA fragmentation factor)의 degradation 및 cleavage 등을 관찰하였다. Immunofluorescent method를 통한 cytochrome c 방출 측정 및 미토콘드리아 막전위 측정을 실시하였다. 결과 : HS-1200은 agarose gel electrophoresis 실험에서 DNA ladder의 관찰, TUNEL assay 및 Hoechst staining 에서 아포토시스 세포들이 대량으로 관찰되는 결과로 미루어 아포토시스에 의한 세포 사망을 유도하는 것으로 사료되었다. 아포토시스에 의한 세포 사망을 검증하기 위한 Western blotting을 통한 PARP cleavage, caspase-3 및 DFF 발현 관찰에서 공히 HS-1200 처치 후 4시간 째부터 PARP, caspase-3 및 DFF의 degradation 및 cleavage가 관찰되었다. HS-1200의 아포토시스 유도에 이르는 기전연구에서 미토콘드리아의 역할에 주목하고 시행한 cytochrome c 방출 측정 및 미토콘드리아막 전위 $(\Delta\Psi_m)$ 측정에서 공히 cytochrome c 방출 및 미토콘드리아막 전위 $(\Delta\Psi_m)$의 감소가 관찰되었다. 결론 : 인체 대장암 세포주(HT-29)에서 CDCA 합성유도체인 HS-1200을 이용한 세포 증식억제 및 세포사망 기전 연구에서, 아포토시스의 유도가 HS-1200의 세포 사망 기전에 중요한 역할을 하는 것을 확인하였다. 이러한 아포토시스의 유도에는 미토콘드리아의 역할이 중요하게 관련되는 것으로 관찰되었다. 상기 결과를 토대로 HS-1200의 항암 치료제로서의 역할에 관한 기초 자료로 서의 유용성을 제시할 수 있었다.

Keywords

References

  1. Im EO, Lee S, Suh H, Kim KW, Bae YT and Kim ND. A novel ursodeoxychoIic acid derivative induces apoptosis inhuman MCF-7 breast cancer cells. Pharm Pharm Pharmacol Commun 1999:5:293-98
  2. Im EO, Choi YH, Paik KJ, et aI. Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Lett 2001;163:83-93 https://doi.org/10.1016/S0304-3835(00)00671-6
  3. Baek JH, Kim JA, Kang CM, Lee YS and Kim KW. Induction of apoptosis by bile acids in HepG2 human hepatocellular carcinoma cells, Korean J Physiol Pharmacol 1997;1:107-115
  4. Choi YH, Im EO, Suh HS, et aI. Apoptotic activity of novel bile acid derivatives in human Ieukemic cells through the activation of caspases. Int J Oncol 2001;18:979-984
  5. HiII MJ, Drasar BS, Hawksworth G, et aI. Bacteria and aetiology of cancer of large bowel. Lancet 1971;1(7690):95-100
  6. HiII MJ, Drasar BS, WiIIiams RE, et aI. Faecal bile-acids and clostridia in patients with cancer of the Iarge bowel. Lancet 1975;1(7906):535-539
  7. Earnest DL, HoIubec H, WaIi RK, et aI. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxychoIic acid. Cancer Res 1994;54:5071-5074
  8. Martinez JD, StratagouIes ED, LaRue JM, et aI. Different biIe acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proIiferation. Nutr Cancer 1998;31:111-118 https://doi.org/10.1080/01635589809514689
  9. Heuman DM, MiIIs AS, McCaII J, HyIemon PB, Pandak WM and VIahcevic ZR. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic biIe salts. In vivo studies in the rat. Gastroenterology 1991;100:203-211
  10. Rodrigues CM, Fan G, Ma X, Kren BT and Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane pertubation. J Clin Invest 1998;101:2790-2799 https://doi.org/10.1172/JCI1325
  11. Kim DK, Lee JR, Kim A, et aI. Inhibition of initiation of simian virus 40 DNA replication in vitro by the ursodexocycholic acid and its derivatives. Cancer Lett 1999;146:147-153 https://doi.org/10.1016/S0304-3835(99)00251-7
  12. Liu X, Kim CN, Yang J, Jemmerson R and Wang X. Induction of the apoptotic program in cell-free extracts: requirement for DATP and cytochrome c. CeII 1996;86:147-157
  13. Zou H, HenzeI, WJ, Lui X, Lutschg A and Wang X. Apaf-1 a human protein homologous to C elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90:405-413 https://doi.org/10.1016/S0092-8674(00)80501-2
  14. Newmeyer DD, Farschon DM and Reed JC. Cell-free apoptosis in Xenopus egg extracts : inhibtion by BcI-2 and requirement for an organelle fraction enriched in mitochondria. Cell 1994;79:353-364 https://doi.org/10.1016/0092-8674(94)90203-8
  15. Kim CN, Wang X, Huang Y, et aI. Overexpession of Bcl-xL inhibits ara-C induced mitochondrial loss of cytochrome c and other pertubations that activate the molecular cascade of apoptosis. Cancer Res 1997;57:3115-3120
  16. Yang J, Liu X, BhaIIa K, et aI. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science 1997;275:1126-1132 https://doi.org/10.1126/science.275.5303.1126
  17. Zamzami N, Susin SA, Masse B, et aI. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995;182:367-377 https://doi.org/10.1084/jem.182.2.367
  18. Zamzami N, Marchetti P, Castedo M, et aI. Inhibitors of permeability transition interfere with the disruption of the mitochondrial membrane potential during apoptosis. FEBS Lett 1996;384:153-157