• 제목/요약/키워드: gaussian neural network

검색결과 195건 처리시간 0.024초

자율주행 이동로봇의 실시간 퍼지신경망 제어 (Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot)

  • 정동연;김종수;한성현
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발 (Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot)

  • 강언욱;양준석;차보남;박인수
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어 (An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method)

  • 신행봉;김용태;조길수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구 (A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator)

  • 김동희;이수흠;신위재
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.

  • PDF

웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교 (Global Function Approximations Using Wavelet Neural Networks)

  • 신광호;이종수
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계 (The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot)

  • 한성현;이희섭
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

확산 신경 회로망을 이용한 움직이는 표적의 검출 (Moving Target Detection by using the Diffusion Neural Network)

  • 최태완;권율;김재창;남기곤;윤태훈
    • 전자공학회논문지B
    • /
    • 제32B권1호
    • /
    • pp.120-126
    • /
    • 1995
  • The diffusion neural network can be cfficiently applied to the Gaussian processing. For example, a difference of two Gaussians(DOG) is performed by this network with ease. In this paper, we model a neural network to perform the function /t(.del.${\Delta}^{2}$G) by using the diffusion neural network. This model is used to detect the edges of moving target in image. By this model not only moving target is separated from stationary background but also their trajectories are obtained using accumulated past information in the diffusion neural network. Furthermore this model needs a small number of connections per cell and the connection weights are fixed-valued. Therefore its hardware can be easily implemented with simple structure.

  • PDF

Over blur를 감소시킨 Deep CNN 구현 (Implementation of Deep CNN denoiser for Reducing Over blur)

  • 이성훈;이광엽;정준모
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1242-1245
    • /
    • 2018
  • 본 논문에서, Gaussian noise를 제거할 때 발생하는 over blurring 현상을 감소시키는 network를 구현하였다. 기존 filtering 방식은 원 영상을 blurring하여 noise를 제거함으로써, edge나 corner 같은 high frequency 성분도 함께 지워지는 것을 확인할 수 있다. CNN (Convolutional Neural Network)기반 denoiser의 경우도 사소한 edge, keypoint를 noise로 인식하여 이러한 정보를 잃게 된다. 우리는 CNN을 기반으로 denoising된 high frequency 성분만을 획득하여 기존 denoiser에 추가함으로써 denoising 성능을 유지하면서 over blurring을 완화하는 network 제안한다.

Dynamical Behavior of Autoassociative Memory Performaing Novelty Filtering

  • Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권4E호
    • /
    • pp.3-10
    • /
    • 1998
  • This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto association for novelty. Networks of retinotopic topology having a one-to-one correspondence between and output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is obtained by subtracting the network output from the input vector. Then the presentation of a "familiar" pattern tends to evoke a null response ; but any anomalous component is enhanced. Such a behavior exhibits a promising feature for enhancement of weak signals in additive noise. As an analysis of the novelty filtering, this paper shows that the probability density function of the weigh converges to Gaussian when the input time series is statistically characterized by nonsymmetrical probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the neural network is converted into a first-order random differential equation. Based on this equation it is shown that the probability density function of the weight satisfies the Fokker-Planck equation. By solving the Fokker-Planck equation, it is found that the weight is Gaussian distributed with time dependent mean and variance.

  • PDF