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Abstract

This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto­

association for novelty filtering. Networks of retinotopic topology having a one-to-one correspondence between input and 
output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is 
obtained by subtracting the network output from the input vector. Then the presentation of a “familiar" pattern tends to evoke 
a null response; but any anomalous component is enhanced. Such a behavior exhibits a promising feature for enhancement 

of weak s^nals in additive noise. As an analysis of the novelty filtering, this paper shows that the probability density 

function of the weight converges to Gaussian when the input time series is statistically characterized by nonsynunetrical 
probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the 
neural network is converted into a first-order random differential equation. Based on this equation it is shown that the 

probability density function of the weight satisfies the Fokker-Planck equation. By solving the Fokker-Planck equation, it 
is found that the weight is Gaussian distributed with time dependent mean and variance.

I. Introduction

This paper concerns the probabilistic behavior of a 
novelty filter which employs an artificial neural network 
perfonning autoassociative task. Our novelty filter is based 
on a feedforward network featuring a one-to-one corresp­

ondence between input and output nodes and a single 

hidden layer of fonnally identical nonlinear units. A no­
velty filter is obtained by subtracting the network output 
from the input vector [1]. Then the presentation of a 
“familiar" pattern tends to evoke a null response; but any 

anomalous component is enhanced. This network topology, 

referred as "retinotopic" and "screen-like", has been applied 

with some success to problems of data compression where 
the comparatively narrow hidden layer encodes the input 
as a vector of activation values, which is readily decoded 
by forming its product with the back (output) end weight 
matrix. This technique utilizes a set of weights to adapt 

the received input data to some desired response. In this 
case, the desired responses are the blocks of input data, 
thus performing the auto-association task. Working in auto­

association task, the novelty filter is rigorously investigated 
as a promising candidate to perform signal enhancement 

or time series prediction. This paper presents an analysis 

of the neural network's behavior, focusing on the weight 
changes. In particular, the probability density function
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(p.d.f) of the weight during training, as they change with 
time, was observed to be converging into Gaussian p.d.f. 
Our aim is to show analytically that the probability density 
function of the weight converges to Gaussian when rhe 
input time series is statistically characterized by nonsym- 

metrical probability density functions. In the structurally 

similar setting, Jacyna and Nguyen [2] have shown that 
the probability density function of the weight converges 
to Gaussian when the input time series is Gaussian distr­

ibuted. The present paper extends this result and shows 
that the p.d.f of the weight converges to Gaussian even 

when the input time series is statistically characterized in 

non-syinmetrical p.d.f. We first show the artificial neural 
network model as the building block for our novelty filter. 
Then, the recursive relation for updating the weight of 
the neural network is converted into a first-order random 
differential equation. Based on this equation, the proba­
bility density function of the weight satisfies the Fokker- 

Planck equation. By solving the Fokker-Planck equation, 
the weight is shown as Gaussian distributed with time­

dependent mean and variance.

IL Artificial Neural Network Model

Consider a stochastic phenomenon that is characterized 

by two random processes x(f) and y(f). The process 

y(i), the output of the hidden units, is observed at time 

t in response to the process applied as input. The relation­
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ship between x(/) and y( i) is observed to be nonlinear 

with a transfer function F(、f) but can be approximated as 
closely as desired by the linear part of its power series 

expansion, i.e.,

+ 〃1洗(派(分 (1)

For w( f) x( Z) small with nonzero 如.Here, w( f) is a 

weight function determined by an adaptive control algor­

ithm and a deterministic signal, r(t), is called the desired 

response. For the asymmetric sigmoid, F(i) = 1/(1

this gives 砒=1/2 and tr = 1/4 ; whereas for the sym­

metric sigmoid, F(f) = (1 — + e""""), one has

7() = 0 and 〃] = 1/2. For simplicity, we will use the 

asymmetric sigmoid throughout the analysis.

The desired response r( /) provides a target for 

adjusting the weight function w(f). By comparing 

an estimate of the desired response 心)，with the actual 

value of the desired response r(/), an estimation error is 

produced. Denoting this error by t), we have :

e(f)=认、f) 一 乂 f) = r(f) —[和 + 们 (2)

Figure 1. Neural Network (Nonlinear Adaptive Filter) Model.

where the weight function f) is adjusted continuously 

to keep the mean squared error as small as possible. A 
signal-flow graph of this mod이 is shown in Figure 1. In 

general, both adaptive filters [3] and Neural Networks [4] 

are built around this model.
Various algorithms have been developed for implement­

ing the adaptive process. In this paper, a widely used 
algorithm known as the backpropagation(BP) algorithm 

[5] is used to adjust the weight function w(t). According 

to this algorithm, the weight function for time instant 

(為+1) T(where T is the sampling time interval) is de­

termined by :

w[ (n + 1) T] = w( nT) + f/Ty x(nT) e(nT) (3) 

where

，_ 西3) I — „-V — 服 —ON I z = a( /) :r(/)

and where 以 is a small fixed constant that governs the 

stability and rate of the algorithm. The first order deriv­

ative y'(z)=〃] is obtained by the linear approximation 

made in Equation (1). It follows that :

w[ (w + 1) T}~ w( nT) + 冋、Tx(nT) e( nT) (4)

Letting 7—+0, the weight function w( t) is a random 

process determined by the following equation :

r( t) x( t) ~ x( f) - 2 w( t) x2( t) (5)

Now assume that the desired response 必)is a constant, 

i.c., 尸(t)三三兀 since the corresponding target for various 

training patterns presented at the input remains the same 
at each epoch. Then, Equation (5) becomes :

d씨' =，"[(— 7?());心) — “"3心)%©)

M (6)
=(心 X( f) 一 “El 以 g2( f)

where /?() and B\ replace the constants, (戶—〃())and 

心七 respectiv이y. This implies that f) is a continuous 

Markov process because 어咯*、the instantaneous change 

in w(t), depends on the present value of w(t) and the 

present value of the input process x(t). Therefore, at any 

given time t, the probability density function of

w(t) satisfies the following partial differential equation 

[6] [7]:

十 = 席 닄)上끖[如如s仞 ⑺

where Q„( w), the n-th order derivative moment of w(t), 

is defined by ;

Qn( w) = lim Tl 피' f [ 出싸? du\n\u{t)^u- du} (8)

If Q„( w) = 0 for ”乏：3, the partial differential equation 

in Equation (7) is generally called the Fokker-Planck equ­

ation. In the next section, Q\(w) and w) are com­

puted for the case of input time series whose statistics is 
characterized with a nonsymmetric p.d.f. In particular, the 
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p.d.f. is assumed to be in the form of a skewed-Gaussian 
described as follows :

= n(t) + en2(/)

where m( t) is Gaussian. The two types of probability 

density function are shown in Figure 2. It was shown 

[2] that Qn is approximat이y zero for «^3 when e is 

small. This means that changes in the process occur 

slowly enough (small “)that moments higher than the 

second vanish more rapidly than A ； as the latter appro­

aches zero. Hence, to a good approximation, the pdf. 

p( w ； d of t') with such a non-Gaussian input satisfies 
the Fokker-Planck equation. We discuss this Fokker-Planck 

equation in the next two sections. It will be shown that 

the density p(w；f) is approximat이y Gaussian with time­

dependent mean and variance.

III. Fokker-Planck Equation

The input process x( f) is assumed to have the form :

x(t) = s+ nJ. t)

where s is a constant and nns(t) = m(0 + Here

n(f) is a zero-mean stationary band-limited white Gauss­
ian process with bandwidth 2B and power spectral density 

Nq/2- Therefore,

x(t) — s+ + sn2(Z) (9)

We need the following facts to compute Qi(tv) and 

0( *):

E[n2(t)] = N0B (10)

E[n2(zi) n(v)] = E[ n(li) n2(v)] = 0 (H)

E[ n3 (w) y)] = 3(N0JB)E[n(u) M(y)] (12)

E[把。)]= 3(MB)2 (13)

E[n2(u) nz{ v)] = E[n(u) n(v)]E[n( v) n(v)]

4- 2 F[ w( u) n(勿]剧 w( ic) w(r)] (14)

=3"舟 + 2(•研&J)死(〃)]2)

E[n2(u) n^v)] - 3(N0B)3 (15)

E[n3(zi) w '(r)] — 9(A^B)2[«(zz)

+ 6(£[w( u) n( y)])3 (16)

E[n\u}护(粉]=9(MB)4 +72(M 时

(E[w(zz) «(y)])2 + 24(E[w( w) n(z;)]) (17)

I + 7 r! < E 广 M
j I E[ n{ u) n( ?;)] dudv

广I j 广 ' ' '"「■시o sin v) > “°、=J,"[万——-血 (18)

= (1/2) (』％)(△£), as B-->oo

[ E[n(u)2 n(v)2]dudv = (Af0B)2Ar

+ 2 f'' " f，* " 쐐 [至1&乡四으〒®T財“出 (19)
J t J i 2 7T\U~ V)

= (、N*护△村十 B(、nS Z\t, as

z，w广/ +八t
I w( u) t')]]3 dudv

一 ' (20)
=(3/8)丿歸序2, as宀8

t十厶；广t + ；"
E[n( zz) m( y)]]4 dudv

Jl (21)
=(1/4)」&8‘2, as B—8

The result in (10) follows directly from the definition 

of the bandlimited, white-noise process.
The results (11) through (17) are obtained by using the 

formulas for the third-order moments of a Gaussian pro­

cess. In (18) through (21), we use the following result [8]:

匸土理纤쎄代 戎=1, 2 
n = 3 
n~ 4

(22)

The next step in our development is to evaluate the 

quantities w) and Q2(w)based on the twelve facts 

shown above. From the definition of Q\{w) and Q2( iv) 

in the previous section, we have :

] 广 f + A"
Qi(w) = lim —7 [“80 戶 x( u) du 

a/->0 1 J t
p r+ az

—w I %2( w) du\
' (23)

="{&}*+3/(同

— 8iM3*[SM?+(2es+1) + 3e2mB]}
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where SNR = s2/NqB is the signal-to-noise ratio. Now

。2(心=Jim -知 [ x( u) du — wx2(w) du]2
"" ' ' (24)

After some tedious computations and simplifications, Equ­

ation (24) becomes

@2( 两 = f 〈쁠 + 占BN3 + 2N仲

l—§ji + SNR+3es + 9e'N^^흘 +5宀歸 明 (25)

一 2疽&)Bi rw[sNQ + 戒5 + 4 es)BNj}

Substituting Qi(w) and Q2(iv) given by Equation (24) 

and (25), respectively into Equation (7) with Q„( iv) = 0 

for 力느3, we have the Fokker-Planck equation for

허쌔" = - “爵으 {{角小 +或団一如冲用 

[SM?+(2&s+l) + 3貞V/]}从w;"i

+ 疽~^了 {伤()2户(쓰 + £2BN^)

+ W B供 2 W2 [ -导음 + SNR, 3爲 + 9扌 M 흐 
TVqXJ Z

+ 5e4N^B2]-2^^ rw[sN(i + £(5+ 4es)BA"]}力(攻；小

(26)

It should be emphasized that the derivation of Equation 

(26) assumes the noise process w( t) has a large band­

width (B—»oo). If we take the initi시 value of w(t) to 

be wn then the initial condition for the above partial 

differential equation is :

Xw；0) d(w— w0) (27)

where 5( w) is Dirac-delta function

IV. Solution to the Fokker-Planck Equation

In this section, we examine the approximate solution to 

the Fokker-Planck equation assuming that the fixed con­

stant fj. in Equation (26) is sufficiently small. This assum­
ption allows us to transform Equation (26) into a boundary 
layer equation. The choice of scale is predicated on the 
asymptotic behavior of the solution within the boundary 

layer [9].
We rewrite Equation (26) to bring out explicit depen­

dence on the parameter “ and by replacing the tedious 
constant terms with temporary constants. We let the new 
constant terms with temporary constants. We let the new 

constants to be :

& = 8i[SM?+(2£s+1) + 3FmB1

A-> — 2Nj Bbetai' [ 음 + SNR + 3爲 + 1) + 3es + 9£2NG (브 ) 
/Vq D 厶

+ 5/M(考)+ 5齐()2序]

A3 = 2疽&8i 尸[sM + 3N{)‘ I号一 + £(2 se+ 1) BNQ2]

Then we rewrite Equation (26) as :

=—卩 ~£- ([^j^s + eNoB) — wA
at aw

+ “」金 戏方2(쇅+ 扌闵计) 
dw~ Z

+ w2A2 — wA3] p(w；t)}

By carrying out the differentiations on the right side of 

the equation, we obtain :

허쌔；"' = 시：2以& +/I]

+ "[ — &「K、s 十 eN°E) + u)A\NqB

+ 2“(2叭-&)]业黑占

+ 疽 [ - 肩)' 쓰 + e，BN；、) + 一 処U "《泓

(28)

By the method of separation of variables [10], we assime 

a solution of the form /?(w, t) = W( w) T(. t) 0- Substituting 
this expression into Equation (28), it can be shown that:

으括 ' 两쓸 + /必們)+ Z决 刀2-復&] %(挪

+ "【— 노 eNqE) + wA ] N()B
(29)

+ 2”(2必宀如)]-制骨

To have bounded solutions in the time domain, a separat­
ion constant for (29) has to be negative number [10]. 

That is

r(z)+ 서 7。) = 0 (30)

and

0 = “W財(今- +島歸)+彩"〃&】-*竝

十 시: — /?(, r(5 4- 6AqB) + wA\ + 2f((2wA-> 一 /侦] -*쁰j으'

+ + + W(iv) (31)

where — a1 is a seperation constant.

To transform Equation(31) into a boundary layer equat­

ion, wc define
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_ 2es+3宀VoB+l + SM? (丿

It will be shown at the end of this section that is 

the average value of the weight function at steady 

state (t T8). This steady-state average weight can be 
determined independent of the Fokker-Planck equation by 
choosing the weight, which minimizes the mean-squared 

error E[e2(f)].

I) The landau symbol 0(.) has the following meaning : f(e) = (砂]

as £—*0 if there exits a positive number A independent of e such 
that |/(£)[ for all |£j^£0, where £()〉().

We now develop a uniformly valid matched asymptotic 

expansion for W( <w). Near 3 = az varies rapidly from 

small vahies of This indicates the formation of a 

boundary layer in a neighborhood about the steady-state 
average weight We expand this layer by rescaling 

the weight such that:

where p2 =旳卩…This choice of p2 is valid since a" 

is an arbitrary separation constant. Equation (35) is the 
dominant 0(1) boundary layer equation which results by 

ignoring all terms of order 1 or higher in Equation 

(34) after dividing both sides of Equation (34) by 

Equation (35) can be simplified by using the steady-state 
average weight given by Equation (32). The resulting dif­
ferential equation is :

女翌。+ 2心+
de

[2/+-------- 氏——L---------]昨）=0
&）2 必（-寸 + £?B시j） +，08當2 一 仞。。/如

(36)

where :

o)— a)8
(33)

where 人〉0. Substituting the rescaled weight into Eqiat- 

ion (31), we find that:

0 = [硏2(쓸+ 宀毗2)

+ ((Woo2 + C2^2，l + 2c^^to0o)X2 —+ 企8)瓦] 으粉

+ "IT ( 一〜 加 + eN()B) + ('、아r + C“8)

+ 2“[2(q/ +始以广為} E卷*

+ RF+m也+ AMB)] W(c) (34)

Because the adaptation parameter “ of the backpropagat- 

ion algorithm has to be a small number (^ —*0), the 

choice of 4 in Equation (34) is not arbitrary. For ex­

ample, if /I > 1 then Equation (34) becomes <y2 Wfdo1 — 0 

as >0- This implies that W(c) must be constant for

all values of c so that it is a bounded solution as dictated 

by the property of a probability density function. Now 

suppose 人=L This choice of A admits sinusoidal solut­

ions as “—0 and the corresponding probability density 

functions are not admissible. Similarly, if < 1 and A #= 

1/2 then solutions to Equation (34) are either trivial or 

nonadmissible. When A —1/2 we arrive at a candidate 
differential equation which describes the dynamics within 

the boundary layer as “一*0. In particular :

[廚)2丿( 쐫- + S2BNq) + 69 oo2A2— 6000X3] d .・羿오〉.

2 de (35)

+ M1VM3 °%项)+L°2 + &mB] WM - 0

L -------:------ N------------------------------------------
2[&2/(-寻으 + 普 BN?) + a)co2A2 — (WcoAs]

We can now solve Equation (36) by introducing the 

following substidons :

I恢)=W)exp(-仃) (37)

and

E =治 (38)

The canonical differential equation for V(Q can be shown 

to be :

睥工네島3眼。 (39)

which is independent of the desired response r. Equation 

(39) is the singular Sturm-Liouville equation with eigen­

values equal to In for nonnegative integer n [10]. In 

other words, by setting f?=死=2nA、NgB, Equation 

(39) admits nontrival solutions. With this substitution, 

Equation (39) becomes a well known differential equation 

which has the Hermite polynomials Hn(^) of degree n 

as solutions [10]. Therefore, using Equation (37), the 
complete dominant 0(1) boundary layer solutions to Equ­

ation (31) can be expressed in terms of Hn{^) as :

lK(e) = B„exp(-fV)7/„(/f) (40) 
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where Bn is an arbitrary normalization constant.

Equation (40) describes the inner boundary layer solut­

ion to Equation (31). The ^thickness'' of the layer is of 

order. In order to obtain a uniformly valid asym­

ptotic expansion for the weight probability density function 

on the interval ( — 8, oo), the solution outside the 

boundary layer must be examined. It is shown [2] that 
the solution to Equation (31) is zero to 0(1) outside of 
the boundary layer.

Now, for 疽=p% 三 /疣，the general solution to Equ­

ation (30) may be written in the form

T„(d = exp [ - al t] = K„ exp[ - 2^At (41)

where Kn is an arbitrary constant and

(^i = NgB (42)

is the noise variance. Thus, using Equation (40) and (41), 
the functions

p„(初；t) = Wn(w) T„( Z) (43)

satisfy Equation (28). By the superposition principle, the 

general solution to Equation (28) is

= S. (44)
” =o

Therefore, we can now write the uniformly valid asym­

ptotic solution to Equation (28) in the f이lowing form :

/ a r I*— 々co)? 1 
如Ef[一屈了一]

Cn exp (- 2“ 点4 ] nt) H„ --。学， (45) 

where

#[成 舟(■■씋^ + £2BNq) + wLAo— 4J 
此=--------- 2 ---------------㈣

and C„ 三 /JB力 are normalizing constants. It will be 

shown at the end of this section that(為「js the steady­

state variance of w{t).
The constants are chosen to satisfy the initial condit­

ion £>(洗；0) = d(而一"o)in Equation(27). Invoking the 

orthogonality property of Hermite polynomials [10], the 

normalizing constants Cn are :

C„ = —3——4■一眞一 쓰우二笋으] (47)
2”"! V2財 /祝T

Upon substituting Cn into Equation (45), the weight pro­

bability density function can be written as :

- Aeo(w) S 二 exp[—2"o?A函]H”(上%二壹쯔 )
2 n\ V

-으')U + 0(V7)] (48)

where

/&>(*)三 / 1/。冲(一来一竺L) (49)
V 2点。 V 2*

Because H0(x) = 1 for any %, is the weight

probability density function at steady-state, i.e., lim 认 

=仇。(zq).

We now find a closed-form expression for Equation 
(48) by considering the following Hermite summation 

identity [11]:

So 板즈, H 心) H3 = exp[ ]§(*+,)]

(50)

where |z|〈L This identity follows by using the Hermite 

generating function and the corresponding integral repre­

sentation for the Hermite function. In order to directly 
associate Equations (50) with (48), we define:

z = e (51)

(52)

and

洗()—Wco (53)

where

2“冰兑4]
(54)

is the corresponding time constant for the stochastic pro­

cess. Substituting Equation (50) into (48) and performing 
some algebraic manipulations, it can be shown that;
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J盘” 떼 T算+ (55)

where the time-dependent average weight value is 

given by :

就K t) = *8 + exp 「(啊一Woo) (56)

and the time-dependent weight variance

~2丄
扌(£)= (1 — exp r ) 0% (57)

Figure 3. Evolution of Weight P.D.F's as Z—»oo.

The probability density function in Equation (55) is Gaus­

sian to 0(1) with a time-dependent mean and variance 

given by Equations (56) and (57) respectively. As expected, 

when t) —*Wco and 扌。)"*)%. Additionally,

the rate at which the time-dependent density in Equation 
(55) approaches steady state is directly proportional to the 

fixed constant 卩、the noise variance 冰；，and the corre­

sponding Signal-to-Noise Ratio (SNR) as shown explicitly 
in Equation (54).

Figure 3 shows the result of a training process together 

with the curve of at t = 0, 500 and 1000 epochs

using Equation (55). Here, we normalized the weight such 

that it is uniformly distributed with zero mean and its 

variance is equal to 1/12. Five non-Gaussian input pattern 
vectors of 100 samples each were generated using the 
random number generator in accordance to the form니a in 
Equation (9). As shown in Figure 3, Equation (55) is a 
good approximation for the probability density function of 

the converged weight when the artificial neural network's 
backpropagation algorithm is operated in the auto-associ­
ative mode.

V. Conclusions

This paper presented the dynamical behavior, in proba­

bilistic sense, of a feedforward neural network performing 

auto-association for novelty filtering. Networks of retinoto­

pic topology having a one-to-one correspondence between 
input and output units can be readily trained using back- 
propagation algorithm, to perform autoassociative mappings. 

As an analysis of the novelty filtering, the probability 
density function of the weight is shown to converge to 
Gaussian when the input time series is statistically chiir- 

acterized by nonsymmetrical probability density functions. 

After outp비 units are locally linearized, the recursive rel­

ation for updating the weight of the neural network is 
converted into a first-order random differential equation. 

Based on this equation it is shown that the probability 
density function of the weight satisfies the Fokker-Planck 

equation. By solving the Fokker-Planck equation, it is 
found that the weight is Gaussian distributed with time 
dependent mean and variance, which closely approximates 
the actual converged weight of network in novelty filtering

I
setting. The rate at which the time-dependent density ap­

proaches steady state is shown directly proportional to 

the fixed constant the noise variance c而，and the 

corresponding Signal-to-Noise Ratio (SNR).
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