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Abstract

This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto-
association for novelty filtering. Networks of retinotopic topology having a one-to-one correspondence between input and
output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is
obtuined by subtracting the network output from the input vector. Then the presentation of a “familiat™ pattem tends to evoke
a null response ; bul any anomalous component is cnhanced. Such a behavior cxhibils a promising feature for enhancement
of weak signuls in additive noise. As an analysis of the novelty filtcring, this paper shows that the probability density
function of the weight converges to Gaussian when the input time series is statistically characterized by nonsymmetrical
probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the
neural nctwork is converted into a first-order random differential equation. Based on this equation it is shown that the
probability density function of the weight satisfies the Fokker-Planck eguation. By solving the Fokker-Planck equation, it

is found that the weight is Gaussian distributed with time dependent mean and variance.

I. Introduction

This paper concerns the probabilistic behavior of a
novelty filter which employs an antificial neural network
perfonming autoassociative task. Our novclty filter is based
on a feedforward network featuring a one-to-onc corresp-
ondence between input and output nodes and a single
hidden layer of formally ‘identical nonlincar units. A no-
velty filter is oblained by subtracting the network output
from the input vector [1]. Then the presentation of a
“familiac” pattern tends to evoke a null tesponse ; but any
anomalous component is enhanced. This network topology,
referred as “retinotopic” and “screen-like”, has been applied
with some success to problems of data compression where
the comparatively narrow hidden laycr encodes the input
as a vector of activation values, which is readily decoded
by forming its product with the back (ouepur) end weight
matrix, This technique utilizes a set of weights to adapt
the received input data to some desired response. In this
case, the desired responses are the blocks of input data,
thus performing the auto-association task, Working in auto-
association task, the novelty ftlier is rigorously invcstigated
as a promising candidate to perform signal cnhancemcnt
or time series prediction. This paper presents an analysis
of the neural metwork’s behavior, focusing on the weight
changes. In particular, the probability density function
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(p.d.f) of the weight during training, as they change with
time, was observed to be converging inte Gaussian p.d.f.
Our aim Is to show analytically that the probability density
function of the weight converges to Gaussian when the
input ume scrics is statistically characterized by nonsym-
metrical probability density functions. In the strucwurally
similar setting, Jacyna and Nguyen (2] have shown that
the probability density function of the weight converges
to Gaussian when the input time series is Gaussian distr-
ibuted. The present paper extends this result and shows
that the p.d.f of the weight converges to Gaussian even
when the input time scrics is statistically characterized in
non-symmetrical p.d.f. We first show the artificial ncural
network model as the building block for our novelty filer.
Then, the recursive relation for updating the weight of
the neural network is converted into a first-order random
differential equation. Based on this cquation, the proba-
bility demstty function of the weight satisfies the Fokker-
Planck equation. By solving the Fokker-Planck equation,
the weight is shown as Gaussian distributed with time-

dependent mean and variance.

II. Artificial Neural Network Model

Consider a stochastic phenomenon that is characterized
by two random processes x(#) and {(f). The process
W 2), the ouwtput of the hidden units, is observed at time

£ in response to the process applied as input, The relation-



ship between x(2) and y(f) is observed to be nonlinear
with a tansfer function F(f) but can be approximaicd as
closely as desired by the linear part of its power scrics

expansion, ie.,

W=+ Da(d (1

For w(Hx(#H small with nonzero 5. Here, w(f) is a
weight function determined by an adaptive control algor-
tthm and a deterministic signal, r(f}, is called the desired
response. For the asymmetric sigmoid, F() = 1/(] k"™,
this gives »y=1/2 and 5, = 1/4; whereas for the sym-
werric sigmoid, A H= (1~ "1+ "™, onc has
7,=0 and 7, =1/2. For simplicity, we will usc the
asymmetric sigmoid throughout the analysis.

The desired response  #(f) provides a wrget for
adjusting the weight function u{¢). By comparing (2.
an cstimate of the desired response (), with the actual
value of the desired response #( £, an estimation crror is

produced. Denoting this error by (), we have:
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Figure 1. Necural Network (Nonlincar Adaptive Filier) Model.

where the weight function w{f) is adjusted continuously
to keep the mean squared error as small as possible. A
signal-flow graph of this model is shown in Figure 1. In
general, both adaptive filiers [3] and Neural Networks [4]
are built around this model.

Various algorithms have been developed for implement-
ing the adaptive process. In this paper, a widely wsed
algorithm known as the backpropagation(BP) algorithm
[5] is used to adjust the weight function wx?). According
(o this algorithm, the weight function for (me instant
{(n+1) T(where T is the sampling time interval) is de-

termined by .

wl(n+ 1) Tl=wnT)+u Ty nT)e{nT) 3
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where

 2)

_\f' = - -
0z <= MHudn

and where 2 is o small fixed constant that governs the
stability and mte ol (he algogthm, The first order deriv-
ative v'{2)= g, is obtained by the linear approximation

made in Equatior (1), 1¢ follows chat :
wlln+ 13 Tl=w(nT)Y+ pup, Tx(nTYe(nT) 4)

Letting 7T 0, the weight function #{¢) is a random

process determined by the following equation :

--‘-4‘%.-') = A O = ey x(D — g W DY ()

Now assume that the desired respgnse +(£) is a constant,
te., A =7, since the corresponding target for various
training patieens presented at the input remains (he same

al cach epoch. Then, Equation (5) becomes :

' d'g{t = gy = m) (8 = un” w )CH

1Byl 1y — 13wl D x°(2)

©)

where 3, and 3, replace the constants, 7{r— ») and
7", vespectively. This implies that aXf) is a continuous
Markov process because —’i%!)-, the instantancous change
in u{1), depends on the present value of wuxX7) and the
present value of the input process x(£). Therefore, at any
given time {, the probability density function p{w:¢) of

ul ) satisties the following partial ditferential cquation
61171 :

_Mﬁﬁ =5 D g (wKwid) O
A=l n! aw

where Q. {w), the n-th order derivative moment of u:(£),

is defined by
PR
Q) = tim e[ g7 ) B

It @{uw) =0 for n=3, the partial differential cquation
in Equation (7) is gencrally called the Fokker-Planck equ-
ation. In the next section, @ {u) and €,(w) arc com-
puted for the case of input time serics whose statistics is

characterized with a nonsymmetric p.d.f. In panicular, the
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pd.f. is assumcd to be in the form of a skewed-Gaussian

described as follows :

nut) = n(8) + en(t)

where  n{#) is Gaussian. The (wo types of probability
density function arc shown in Figure 2. I' was shown
12} that Q, is approximately zero for >3 when ¢ is
small. This means that changes in the process occur
slowly cnough (small ) that moments higher than the
second vanish more rapidly than 2¢ as the latter appro-
aches zero. Hence, to a good approximation, the p.d.f.
Huw; D of wl(t) with such a non-Gaussian input satisfics
the Fokker-Planck cquation. We discuss this Fokker-Planck
equation in the next two scctions. It will be shown that
the density p(w;¢) is approximately Gaussian with time-

dependent mean and variance.
II1. Fokker-Planck Equation
The input process x(f) is assumed to have the form :

x(¢) = s+ n, 1)

GAVASIAR p. % £ with masssws® sipan oL

T

Figure 2. Gaussian VS. Non-Gaussian P.D.F.

where s is a constant and n,,({) = n({)+ en>(¢). Here

n(f) is a zero-mean stationary band-limited white Gauss-
ian procecss with bandwidth 2B and power spectral density
Ny /2. Therefore,

(1) = s+ ul) +en’(2) (&)

We need the following facts to compute @ {w) and

Q) -

El#2 ()] = Ny B (10)
Eln*(w) ()] = El[n(2) ()1 =10 (1

El#*(0) ni)) = 3HNB) E[ nl ) n(2)] (12)
E[#' ()] = 3(N, B)* (13)

Eln"Go v ()] = E[nG0 n()) E[nl o) 2(v))
+ 2 Eln(e) n{ )] E[ n{ ) n(1)] (14)
= (Ny B)" + 2 E n(2) W )]
E[n*(w) ' ()] = 3(Ny BY (15)
Ef 2 (20 27 ()] = 9N B [ e6) n( )]
+6( E] n10) n( 0)1* (16)
Eln' () n'(0)] = 9(Ny B! + 72N, B)*
(E[n() ()] + 21K [#lw) ()] (D)
ey R

as B

T I[-‘t [ E[ n( “) n( U)] dudv

=(]/2) (NH)(‘A‘[)v

J"“ "’j"“ o El sl w)? nlv) ] dude = (NyB) A F

ao (VT Ny _sin 2rB(u—1) 2 .
vef 0 SR 2 gy (19)
= (N B a8 + BIN) &t as B-»oo
trg 1+ Ly
f f ELnl ) 0l eN)? dudr
S I i (20)
=(3/B)N,'B a1, as B s
N e T 4
[77 [ Elntw sl dudo
g St )
= (/) N,'B* ~ ¢, as Boooo

The result in (t0} follows directly from the definition
of the bandlimited, white-noisc process.

The resulis {11) through (17) are obtained by using the
formulas for the third-order momenis of a Gaussian pro-

cess. In (18) through (21), we use the folliowing result [8):

o " 1, n=1,2
[y ={3a. w=3 @2)
s 213, n=4

The next step in our development is to cvaluate the
quantities () and () based on (he twelve faces
shown above. From the definition of @ () and Q. w)

in the previous scction, we have :

Qi w) = .!.imo —,{—t [uBor _l;” o x( 1) du

—uBw .(;” () dud
= 1By s+ &N, Bl

23)

— B Ny Bw[ SNR+ (254 1)+ 3€*N, B}



where SNR = s*/N,B is the signal-to-noise ratio. Now

'x:( ) dul®
@4)

Q) = |IITI

Y

E{;q?urf x(u)du ;c&wf .

After some tedious computations and simplifications, Equ-

ation (24) becomes

Q)= 1" 8" 7’( + & BN + 2N B i

[ —+SNR+ Jes+ 96N 5 5N B (25)

2
—2,51"{3‘.,;5" rw[ sV, (5t 1es) BN, ]

Substituting () and Q.,{w) given by Equation (24)
Qlw) =0
for »n=3, we have the Fokker-Planck equation for p(w:#):

and (25), respectively imto Equation (7) with

j[)(au;;l) = - 9 ((Byrls+ eNyB) — 8 w83
[SNR+{2es+ 1) +3e' N, B} plaw: )
N,
e A r(-‘—" + €2 BN,

5'

+2N," Bﬁ#w"{--- |+ SNR+3es+ 96N, B ;

+5¢' N B] —21’30/3: rwl sy + €05+ d£5) BNS1) plw:0))
(26)

It should be cmphasized that the derivation of Equation
{26) assumes the noisc process »{7) has a large band-
width (B -—+00). If we take the imtial valuc of wuff) 0
be wy

differential equation is :

then the initial condition for thc above partial

pui0) = Sw— wy) (27

where 8(a) is Dirac-delta funciion

IV. Solution to the Fokker-Planck Equation

In this section, we cxamine the approximate solution to
the Fokker-Planck equation assuming that the fixed con-
stant g in Equation (26) is sufficiently smail. This assum-
ption allows us to transform Equation {26) into a boundary
laycr cquation, The choice of scale is predicated on t(he
asymptotic behavior of the solution within the boundary
layer [9I.

We rewrite Equation (26) to bring out explicit depen-
dence on the parameter g and by replacing the tedious
constant tepms with temporary constants. We let the new
constant terms with temporary constants. We let (he new

constants to be ;
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A= El[SNR+(2es+ 1)+ 3% Ny H]

= 20" Bbeta,*

(5 )
2
b 5EE N, ( g ) + 56t N 18]

Ay = 267 By B r (5N, + 3N, ff+a(255+1)BNn2]

Then we rewritc Equation (26) as:

DRI, —— L fors+ et 1) — why NoB) i )

a3 s N 4 u
+ "aQwT- L8y r‘(TU 1 & BNy}

+ 1 Ay — wAy) plae: D))

By carrying out the differentiations on the right side of
the cquation, we oblain :

‘9”(‘;‘,“'-9- o 820 4 Ay NoB) pl a1 1))

+ ptl = Burs+eN, B) + 1wA, Ny B

opwif)
duw

+ 2u(2wA.— AYD)
" 0o N " . . S -
b PO+ BN + wiA,— ) 22l 2y ;

(28)
By the method of separation of varables [10], we assume

a solution of the form p{w, )= W{w) T(# +0. Substituting

this expression into Equation (28), it can be shown that:

{ we o v Ny » Y . 2P,
"'z,:"( ,’) i [Bemr 30 + & BN+ w” Ay — weAy) '_pt‘}’((z,:;)
b — Bor{s+eN, B) + w N B
(29)

, W,
+ 2020 = A RS

+ 420+ AN BY

To have bounded solutions in the time domain, a scparat-
ien constant for (29) has 10 be negative number [10].
That is

T+ T =0 3M

aml

-, 4 Hu?

ar e Neo e N
0 s [Ba '2[' e BNy e AL o

4l = Burs + €Ny B+ Ay NoB 4 20201y — A1) LD

4l 20+ A, Ny BY) W) (31)

where & s a seperation comstant.
To wransform Equation(31) into a boundary layer equat-

ion, we deline
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Weo = Bor(s+eN,B)/ (8, Ny B)
® 7 2es+3e°N,B+ 1+ SNR

(32)

It will be shown at the end of this section that . is
the average value of the weight function w{#) a1 stcady
state (¢ —oo). This stcady-statc average weight can be
determmined independent of the Fokker-Planck equation by
choosing the weight, which minimizes the mean-squared
emmor E[&°{D].

We now develop a uniformly valid matched asymptotic
expansion for W(w). Near w= w., varics rapidly from
small values of . This indicates the formation of a
boundary layer in a neighborhood about the steady-state
average weight .. Wec cxpand this layer by rescaling

the weight such that:
¢ == 33)

where A>(Q. Substituting the rescaled weight into Equat-
ion {31}, we find that:

0= 2% [ﬁ0272(_% + EZB.M.Z)
+low' +6 0™+ 200" 0a) Ay — (e’ + 0} Al i%zif).
+p' = ByrsteN,B) + (e’ + wa) A) Ny B
+20(2cu + wi) Ay = Ay} SHLED

bla® + p(2pAs+ A Ny B W(C) (34)

Because the adaptation parameter g of the backpropagat-
ion algorithm has to be a small aumber (u—0Q), the
choice of A in Equation (34) is not arbitrary. For ex-
ample, if A>1 then Equation (34) becomes o W/d¢® =0
as u—0. This implies that W{¢) must be constant for
all values of ¢ so that it is a bounded solution as dictated
by the property of a probability density function. Now
suppose A =1. This choice of A admits sinusoidal solut-
ions as zx—( and the corresponding probability density
functions are not admissible. Similarly, if A<) and A+
1/2 then solutions to Equation (34) arc either trivial or
nonadmissible. When A =1/2 we amive at a candidate
differential equation which describes the dynamics within

the boundary layer as pz—(. In particular :

2
[80* Lo + 2 BN + 00" Az~ w0 A3) L_W_}_Cl
2 ac (35)

n cA.NOBMij- F1p5+ A, NyBl W(c) =

where pz = a% ¢. This choice of p2 is valid since "
is an arbitrary separation constant. Equation (35) is the
dominant O(1) boundary layer equation which results by
ignoring all terms of order v ; or higher in Equation
(34) after dividing both sides of Equation (34) by u.l
Equation (35) can be simplified by using the steady-state
average weight given by Equation (32). The resulting dif-

ferential cquation is :

2 R .
d_“fz(ﬂ_ 27 +
dc (36}

(2r+—— ] W(e) = 0
Bt PG+ E BN + 0 Ay~ w Ay

where :

NyBA,
2[;9.1"’#(%“— + BN + 0w’ Ay — o Ajl

y=

We can now solve Equation (36) by introducing the
following substitions :

W(5) = V(¢exp(~2¢) (37
and
£=rv¢ (38)

The canonical differential equation for V(&) can be shown
to be:

dV(E) . dV(E [0 =
it -2e 4 +[AIN"B]V(E) 0 (39)

which is independent of the desired response . Equation
(39) is the singular Sturm-Liouville equation with eigen-
values equal to 2n for nonnegative intcger n [10). In
other words, by seting p° = p% = 204, N, B, Equation
(39) admits nontrival solutions. With this substitution,
Equation (39) becomes a well known differential equation
which has the Hemite polynomials H,(£) of degree #
as solutions (10]. Therefore, using Equation (37), the
complete dominant O(1) boundary layer solutions to Equ-

ation (31) can be expressed in terms of H,(£) as:

W, (&) = B, exp{— ) H,(#8) (40)

1) The landau symbol O) has the following meaning : f(e) = O ge))
as ¢ +{) if there exits a positive number A independent of ¢ such
that |F{e) = Algle}| for all | eb<iey. where g0



where B, is an arbilrary normalization constant.

Equation (40) describes the inner boundary layer solut-
ion to Equation (31). The “thickness” of the layer is of
order V z2. In order to obiuin a uniformly valid asym-
peotic expansion for the weight probability density function
on the interval (—oo, o), the solution ouwtside the
boundary layer must be examined. It is shown [2] that
the solution to Equation (31) is zero to (1) outside of
the boundary layer.

Now, for o= p% = pff, the general solution to Equ-
ation (30} may be written in the form
T.(9 = K, expl - a’ ) = K, exp — 2uds A, nt) (41)
where f(, is an arbitrary constant and

& = NyB (42)

is the noise variance. Thus, using Equation (40) and (41),

the functions
pulae ity = W) T,(D (43)

satisfy Equation (28). By the superposition principle, the
general solution to Equation (28) is

Kwit) = 2 pulaid (@)

Therefore, we can now write the uniformly valid asym-
ptotic solution to Equation (28) in the following form :

Hw; )= expl —lw- uf')— ]
20m
i c, exp(—2yof’vA.n:)H,—"-(“’2;“;°°)" (45)
where
a0, Ny o9 2
. wl By r( G + &*BN) + oo As— 600 A3)
P = e B s T e 46)

Ny BA, A

and C,=K,B, are normalizing constants. lt will be
shown at the end of this section that g.° is the steady-
state variance of w(£).

The constants arc chosen to satisfy the initial condic-
ion  plw:0) = Sw—uy) in Equation(27). Invoking the
orthogonality property of Hermite polynomials [10], the

normalizing constants C, are:
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= Wep

1 Wp
— H -
2"y 27 o ol V205

C, = } 47

Upon substituting C,, into Equation (45), the weight pro-

bability density function can be written as:

Wity poled 2 '}.'.]"‘- expl - 2ok Ayl H,( %)

r=u

H,,(--%“;.—Z"“W{How;; 3] (48)
where
e 2
Pl W) = 7 2;0;,_ exp( v;ﬂ:‘”} ) “9)

Because  f1,(x) =1 for any x. p..(w) is the weight
probability density function at steady-state, ic., !'u)l Hw
Pl ).
We now find a closed-form expression for Equation
{48) by considering the following Hermite sammation
identity |11}

S .2l g = b L2y S+ )
2, e HAN A = = exol £ )
(50)

where |21 (1. This identity follows by using the Hermite
generating tunction and the corresponding integral repre-
sentation for the Hermite function. In order to dircetly

associate Equations (50) with (48), we define:

2=e ° (&13)

W= W

X i 72—0-5—‘ (52)

and

Wy — W,

= - 53
—V—"*Z =z (53)
where
re —— (54)
2;1@-4/1'

is the corresponding time constant for the stochastic pro-
cess, Substisuting Equation (50) into {(48) and performing

sote algebraic manipulations, it can be shown that :
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K f) = exp[ —(w—1D* |1} 4 (W7 )] (55)

1
v 2 (8 20°(1)

where the time-dependent average weight value X4 is

given by :

t

w0 = e + exp 7 (u— we) (56)

and the time-dependent weight variance

-4
FH=U0—-exp )& 57
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Figure 3. Evolution of Weight P.D.F's as t—co.

The probability density function in Equation (55) is Gaus-
sian 10 O(1) with a time-dependent mean and varance
given by Equations (56) and (57) respectively. As expected,
when 100, w(f—w., and F(1) —o%. Additionally,
the rate at which the time-dependent density in Equation
{55) approaches steady state is directly proportional to the
fixed constant ¢, thc noise variance & , and the corre-
sponding Signal-to-Noise Ratio (SNR) as shown explicitly
in Equation (54).

Figure 3 shows the result of a training process together
with the curve of pw;#) at t =0, 500 and 1000 epochs
using Equation (55). Here, we normalized the weight such
that it is uniformly distributed with 2ero mean and its
variance is cqual to 1f12. Five non-Gaussian input pattem
vectors of 100 samples each were generated using the
random number penerator in accordance to the formuta in
Equation (9). As shown in Figurc 3, Equation (5%) is a
good approximation for the probability density function of

the converged weight when the artificial neural network’s
backpropagation algorithm is operated in the auto-associ-
ative mode.

V. Conclusions

This paper presented the dynamical behavior, in proba-
bilistic sense, of a feedforward neural network performing
anto-association for novelty filtering. Networks of retinoto-
pic topology having a one-to-onc correspondence between
input and output units can be readily trained using back-
propagation algorithm, to perform autoassociative mappings.
As an analysis of the novelty filtering, the probability
density function of the weight is shown to converge 1o
Gaussian when the input time series is statistically chur-
acterized by nonsymmetrical probability density functions.
After output units are locally lincarized, the recursive rel-
ation for updating the weight of the neural network is
converted into a (irst-order random differential equation.
Based on this equation it is shown that the probabilily
density function of the weight satisfies the Fokker-Planck
equation. By solving the Fokker-Planck equation, it is
found that the weight is Gaussian distributed with time
dependent mean and variance, which closely approximates
the actat converged weight of network in novelty filtering
setting. The rate at which the time-dependent density ap-
proaches steady state is shown dircctly proportional to

the fixed constant s, the noise variance o'i-‘ and the

corresponding Stgnal-to-Noise Ratio (SNR).
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