• Title/Summary/Keyword: gauss-newton

Search Result 129, Processing Time 0.021 seconds

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Electric Field Optimization using the NURB curve in a Gas-Insulated Switchgear (NURB 곡선을 이용한 가스절연 원통형 관로 내에서의 전계 최적화)

  • Han, In-Su;Kim, Eung-Sik;Min, Suk-Won;Lee, June-Ho;Park, Jong-Keun;Lee, Tae-Hyung;Park, Choon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.548-558
    • /
    • 2009
  • This paper attempts to develop an algorithm which optimizes the electric field through the so-called NURB(Non-Uniform Rational B-spline) curve in order to improve the insulation capacity. In particular, the NURB curve is a kind of interpolation curve that can be expressed by a few variables. The electric field of a conductor is computed by Charge Simulation Method(CSM) while that of a spacer by Surface Charge Method(SCM); this mixed calculation method is adopted for the electric field optimization. For calculation of the initial and optimal shapes, the Gauss-Newton method, which is quite easy to formulate and has slightly faster convergence rate than other optimization techniques, was used. The tangential electric field, the total electric field, and the product of the tangential electric field and area (Area Effect) were chosen as the optimization objective function by the average value of electric field for the determined initial shape.

Motion Parameter Estimation and Segmentation with Probabilistic Clustering (활률적 클러스터링에 의한 움직임 파라미터 추정과 세그맨테이션)

  • 정차근
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • This paper addresses a problem of extraction of parameteric motion estimation and structural motion segmentation for compact image sequence representation and object-based generic video coding. In order to extract meaningful motion structure from image sequences, a direct parameteric motion estimation based on a pre-segmentation is proposed. The pre-segmentation which considers the motion of the moving objects is canied out based on probabilistic clustering with mixture models using optical flow and image intensities. Parametric motion segmentation can be obtained by iterated estimation of motion model parameters and region reassignment according to a criterion using Gauss-Newton iterative optimization algorithm. The efficiency of the proposed methoo is verified with computer simulation using elF real image sequences.

  • PDF

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Frequency domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test (향상된 슈도-헤시안 행렬을 이용한 탄성파 완전 파형역산)

  • Choi, Yun-Seok;Shin, Chang-Soo;Min, Dong-Joo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.329-336
    • /
    • 2007
  • For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.

  • PDF

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.

A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete (철근콘크리트의 3차원 재료비선형해석)

  • 박성수;성재표
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • Objection of this study is to present the three-dimensional material nonlinear analysis of reinforced concrete. A concrete is idealized with three-dimensional 16-node solid element including triaxial nonlinear stress-strain behavior, cracking, crushing and strain softening: a steel with three-dimensional 3 node truss element including elastic-plastic behavior with strain hardening. The cracked shear retention factor is introduced to estimate the effective shear modulus con sidering aggregate interlock after c:racking and a modified newton method is used to obtain a nu merical solution. Numerical results in a gauss point is displayed graphically. Numerical examples of Krahl's reinforced concrete beam and Hedgreds shell are selected to compare with the experimental and numerical results.

Current Case & Future Study applied on Distribution System Load Flow Algorithm (배전계통에 적용된 조류계산 알고리즘 적용사례 및 미래형 연구)

  • Lee, S.S.;Song, K.J.;Sohn, J.M.;Han, J.G.;Lee, T.Y.;Park, J.K.;Moon, S.I.;Kim, J.C.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.181-183
    • /
    • 2003
  • 본 연구에서는 현재 국내-외 논문을 참조하여 배전계통에 적용된 조류계산 알고리즘의 적용사례를 조사하였다. 배전계통에 적용된 조류계산알고리즘은 Power Summation Method와 Current Summation Method가 있다. 배전계통은 선로의 구조가 거의 대부분 방사상으로 성되어 있기 때문에 Newton Raphson, Gauss Seidel, Fast Decoupled 방법을 그대로 사용하기는 문제가 있다. 그래서 DistFlow, Forward/Backward sweeping 법 등이 주로 사용되어 왔다. 그러나 미래의 계통은 현재와는 또 다른 Topology로 방사상과 루프가 혼합된 형태로 다르게 구성되어야 할 것이다. 이러한 상황에서 미래의 배전계통에 대하여 적용 가능한 알고리즘을 전망하고져 한다.

  • PDF

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.