• Title/Summary/Keyword: gauss-newton

Search Result 129, Processing Time 0.026 seconds

Indoor Position Estimation of First Responders for Rapidly Deployable Emergency Communication Systems in Disaster Recovery (재난 복구시 신속 배치 가능한 응급통신시스템에서 긴급구조원의 실내위치측정)

  • Cabacas, Regin A.;Ra, In-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.73-74
    • /
    • 2018
  • This paper presents the incorporation of still-alive access points (SAPs) and helper access points (HAPs) that can be utilized as anchor nodes for position estimation of a First Responders (FRs) for rapidly deployable Emergency Communication Systems (ECS) in disaster recovery. In addition, the localization environment has is formulated and initially examines the use of a distributed Gauss-Newton algorithm (GNA) as optimization technizue. A simulation has been conducted and compared with the commonly used trilateration approach in position estimation.

  • PDF

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication (위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘)

  • Taehyun Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.329-337
    • /
    • 2024
  • Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

Nonlinear Dynamic Analysis on Low-Tension Towed Cable by Finite Difference Method (유한차분법을 이용한 저장력 예인케이블의 비선형 동적해석)

  • Han-Il Park;Dong-Ho Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.28-37
    • /
    • 2002
  • In this study nonlinear dynamic behaviors of towed tow-tension cables are numerically analysed. In the case of a taut cable analysis, a bending stiffness term is usually neglected due to its minor effect but it plays an important role in a low-tension cable analysis. A low-tension cable may experience large displacements due to relatively small restoring forces and thus the effects of fluid and geometric non-linearities become predominant. The bending stiffness and non-linearity effects are considered in this work. In order to obtain dynamic behaviors of a towed low-tension cable, three-dimensional nonlinear dynamic equation is described and discretized by employing a finite difference method. An implicit method and Newton-Raphson iteration are adopted for the time integration and nonlinear solutions. For the calculation of huge size of matrices. block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with those of a in-house program of WHOI Cable with good agreements.

Analysis on the Contribution of FDOA Measurement Accuracy to the Performance of Combined TDOA/FDOA Localization Systems (TDOA/FDOA 복합 위치추정 시스템에서 FDOA 측정 정확도에 따른 추정 성능 기여도 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.88-96
    • /
    • 2014
  • In modern electronic warfare systems, the necessity of a more accurate estimation method based on non-AOA (arrival of angle) measurement, such as TDOA and FDOA, have been increased. The previous researches using single TDOA have been carried out in terms of not only the development of emitter location algorithms but also the enhancement of measurement accuracy. Recently, however, the combined TDOA/FDOA method is of considerable interest because it is able to estimate the velocity vector of a moving emitter and acquire a pair of TDOA and FDOA measurements from a single sensor pair. In this circumstance, it is needed to derive the required FDOA measurement accuracy in order that the TDOA/FDOA combined localization system outperforms the previous single TDOA localization systems. Therefore, we analyze the contribution of FDOA measurement accuracy to emitter location, then propose the criterion based on CRLB (Cramer-Rao lower bound). Simulations are included to examine the validity of the proposed criterion by using the Gauss-Newton algorithm.

IDENTIFICATINO OF DYNAMIC PARAMETER OF THE RUBBER CRAVLES SYSTEM FOR FARM MACHINERY

  • Inoue, Eiji;Konya, Hideyuki;Hirai, Yasumaru;Noguchi, Ryozo;Hashiguchi, Koichi;Choe, Jung-Seob
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.146-153
    • /
    • 2000
  • The rubber crawler system for farm machine is composed of driving units such as track rollers, driving sprockets and rubber crawlers. Vibration characteristics of the rubber crawler system varies by driving speed, center of gravity, mass□moment of inertial□location arrangement of track rollers and dynamic parameters such as dynamic spring constant (k) and viscous damping coefficient (c) of a rubber crawler. In general, vibration of the rubber crawler system occurs by reason for mechanical interaction between the rubber crawler and track rollers. Because the dynamic spring constant and viscous damping coefficient vary periodically by mechanical characteristics(deformation characteristics) of the rubber crawler when track rollers drive on the between lugs of the rubber crawler. Therefore, both dynamic parameters k and c were expressed as Fourier series by authors through the shaking test of the rubber crawler and further, vibration characteristics of the rubber crawler system could be simulated analytically. However, actual values of dynamic parameters k and c are different from those obtained by the shaking test because dynamic characteristics of the rubber crawler vary by the effect of variable tension and driving resistance of track rollers. So, actual values of k and c should be identified in the condition of actual driving test. In this study, dynamic parameters such as k and c of the rubber crawler system, which are expressed as Fourier series, were identified using the Gauss-Newton Method. Therefore, validity of identified parameters k and c was discussed through the simulation using experimental data of actual driving test. As a result, in the Fourier series of dynamic parameters of spring constant k and viscous damping coefficient c, excellent parameter convergence and simulation were observed using the Fourier series' zero order and first term of the dynamic model. Furthermore, it was clarified that identification for model parameters which are fitted to actual dynamic motion (vibration) wave of the crawler system was possible by using the time series data observed in vertical and pitching motion of the crawler system.

  • PDF

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey (탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출)

  • Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.231-241
    • /
    • 2014
  • Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.