DOI QR코드

DOI QR Code

Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey

탄성파 파형역산을 이용한 엔지니어링 목적의 단일채널 탄성파 탐사자료에서의 속도모델 도출

  • Choi, Yeon Jin (Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Shin, Sung Ryul (Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Ha, Ji Ho (Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Chung, Woo Keen (Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Kim, Won Sik (Petroleum & Marine Research Division)
  • 최연진 (해양대학교 에너지자원공학과) ;
  • 신성렬 (해양대학교 에너지자원공학과) ;
  • 하지호 (해양대학교 에너지자원공학과) ;
  • 정우근 (해양대학교 에너지자원공학과) ;
  • 김원식 (한국지질자원연구원 석유해저연구본부)
  • Received : 2014.10.10
  • Accepted : 2014.11.18
  • Published : 2014.11.30

Abstract

Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.

최근 엔지니어링 목적의 단일채널 탄성파 탐사가 많이 수행되고 있다. 단일채널 탄성파 탐사는 일반적으로 특별한 자료처리 없이 효율적으로 지하 지질구조를 파악할 수 있는 장점이 있지만, 복잡한 지질구조에 대한 정확한 영상화에는 한계를 가진다. 자원개발 목적의 다중채널 탄성파 탐사에서는 최근 파형역산에 대한 연구가 활발히 진행되고 있으며, 복잡한 지하구조에 대해서도 정확한 지하영상화 결과를 제시하고 있다. 이에 본 논문에서는 단일채널 탄성파 탐사 자료를 이용하여 지하 속도모델을 구하기 위한 탄성파 파형역산 알고리즘을 제안하였다. 제안한 알고리즘은 단일채널 탄성파 탐사를 고려하여 지하 매질을 1차원으로 가정하였으며, 벌림에 의한 지연시간을 제거하여 벌림에 의한 효과를 보정하였다. 파형역산은 안정적인 해의 계산이 가능한 가우스-뉴턴법을 이용하였다. 알고리즘은 수정된 Marmousi2 모델에 적용하여 검증하였으며, 부산항에서 얻은 현장자료에 적용해 보았다.

Keywords

References

  1. Bellefleur, G., Duchesne, M. J., Hunter, J., Long, B. F., and Lavoie, D., 2006, Comparison of single- and multichannel high-resolution seismic data for shallow stratigraphy mapping in St. Lawrence River estuary, Quebec, Current Research of the Geological Survey of Canada, 2006-D2, 1-10.
  2. Cho, C., and Lee, H., 2009, Application of convolutional perfectly matched layer method to numerical elastic modeling using rotated staggered grid, Jigu-Mulli-wa-Mulli-Tamsa, 12, 183-191.
  3. Duchesne, M. J., and Bellefleur, G., 2007, Processing of single channel, high-resolution seismic data collected in the St. Lawrence estuary, Quebec, Current Research of the Geological Survey of Canada, 2007-D1, 1-11.
  4. Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bulletin of the Seismological Soceiety of America, 86, 1091-1106.
  5. Ha, J., Ko, H., Cho, H., Chung, W., Ahn, D., and Shin, S., 2013, A proposal of marine geophysical exploration techniques for offshore plant installation, Journal of the Korean Society of Marine Engineering, 37, 242-251. https://doi.org/10.5916/jkosme.2013.37.2.242
  6. Kim, Y., Cho, Y., and Shin, C., 2013, Estimated source waveletincorporated reverse-time migration with a virtual source imaging condition, Geophysical Prospecting, 61, 317-333. https://doi.org/10.1111/j.1365-2478.2012.01119.x
  7. Kim, W., Park, K., Kim, H., Cheong, S., Koo, N., Lee, H., and Park, E., 2010, Detailed processing and analysis on the singlechannel seismic data for site survey of Daecheon-Wonsando subsea tunnel, Jigu-Mulli-wa-Mulli-Tamsa, 13, 336-348.
  8. Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155-SM167. https://doi.org/10.1190/1.2714334
  9. Ko, H., Ha, J., Chung, W., Shin, S., 2014, Seismic attribute analysis and interpretation with single channel seismic data of shallow marine, J. KSMER, 51, 55-67. https://doi.org/10.12972/ksmer.2014.51.1.55
  10. Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migration, in Conference on Onverse Scattering: Theory and Application, pp. 206-220, eds Bednar, J.B., Redner, R., Robinson, E., Weglein, A., Soc. Ind. Apl. Math., Philadelphia.
  11. Lee, H., Koo, N., Park, K., Yoo, D., Kang, D., Kim, Y., Seo, G., Hwang, K., Kim, J., and Kim, J., 2003, Resolution of shallow marine subsurface structure image associated with acquisition parameters of high-resolution multi-channel seismic data, Mulli-Tamsa, 6, 126-133.
  12. Martin, G., Wiley, R., Marfurt, K. J., 2006, Marmousi2: An elastic upgrade for marmousi, The leading edge, 25, 156-166. https://doi.org/10.1190/1.2172306
  13. Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophysics, 52, 1211-1228. https://doi.org/10.1190/1.1442384
  14. Pratt, R. G., 1990, Inverse theory applied to multi-source crosshole tomography. Part 2: elastic wave-equation method, Geophysics Prospect., 38, 311-329. https://doi.org/10.1111/j.1365-2478.1990.tb01847.x
  15. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-newton and full newton method in frequency-space seismic waveform inversion, Geophysics, 133, 341-362.
  16. Romdhane, A., Grandjean, G., Brossier, R., Rejiba, F., Operto, S., and Virieux, J., 2011, Shallow-structure characterization by 2D elastic full-waveform inversion, Geophysics, 76, R81-R93. https://doi.org/10.1190/1.3569798
  17. Sheen, D. H., Tuncay, K., Baag, C. E., and Ortoleva, P. J., 2006, Time domain gauss-newton seismic waveform inversion in elastic media, Geophysical Journal International, 166, 1373-1384.
  18. Shin, C., and Cha, Y. H., 2008, Waveform inversion in the laplace domain, Geophysical Journal International, 173, 922-931. https://doi.org/10.1111/j.1365-246X.2008.03768.x
  19. Shin, C., and Cha, Y. H., 2009, Waveform inversion in the laplace-fourier domain, Geophysical Journal International, 177, 1067-1079. https://doi.org/10.1111/j.1365-246X.2009.04102.x
  20. Shin, C., Yoon, K., Marfurt, K. J., Park, K., Yang, D., Lim, H. Y., Chung, S., Shin, S., 2001, Efficient calculation of partialderivative wavefield using reciprocity for seismic imaging and inversion, Geophysics, 66, 1856-1863. https://doi.org/10.1190/1.1487129
  21. Shin, S., Shin, C., and Suh, J., 1997, Finite difference seismic modeling using staggered grid, Journal of the Korean Institute of Mineral and Energy Resource Engineers, 34, 161-167.
  22. Shin, S., Yeo, E., Kim, C., Park, K., Lee, H., and Kim, Y., 2006, Seismic properties study of gas hydrate in deep sea using numerical modeling technique, Mulli-Tamsa, 9, 139-147.
  23. Shin, S., Chung, W., Ha, J., Ko, H., 2013, An introduction to marine geophysical exploration technique and its application, J. KSMER, 50, 596-606.
  24. Steeples, D. W., 2000, A review of shallow seismic methods, Annals of Geophysics, 43, 1021-1030.
  25. Tarantola, A., 1984, A strategy for nonlinear elastic inversion of seismic reflection data, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  26. Tarantola, A., 1987, Inverse Problem Theory: Methods for data fitting and parameter estimation, Elsevier Science Publ. Co., New York.

Cited by

  1. A Study on the Underwater Target Detection Using the Waveform Inversion Technique vol.34, pp.6, 2015, https://doi.org/10.7776/ASK.2015.34.6.487