• Title/Summary/Keyword: gate oxide thickness

Search Result 240, Processing Time 0.026 seconds

Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma ($BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Kang, Chan-Min;Yang, Xue;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

Reliability Analysis of CMOS Circuits on Electorstatic Discharge (CMOS 회로의 ESD에대한 신뢰성 문제 및 보호대책)

  • 홍성모;원태영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.88-97
    • /
    • 1993
  • Electrostatic Discharge(ESD) is one of the major reliability, issues for today's VLSI production. Since the gate oxide with a thickness of 100~300$\AA$ is vulnerable to several thousand volt of ESD surge, it is necessary to control the ESD events and design an efficient protection circuit. In this paper, physical mechanism of the catastrophic ESD damage is investigated by transient analysis based upon Human Body Model(HBM). Using two-dimensional electrothermal simulator, we study the failure mechanism of the output protection devices by ESD and discuss the design issues for the optimun protection network.

  • PDF

저전력 2D FET 설계

  • Jang, Jae-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.350-354
    • /
    • 2016
  • 최근 연구 되고 있는 Transition Metal Dichalcogenides(TMD)는 전이금속과 칼코젠족 화합물로, 반도체 소자로써 graphene이 가지고 있던 실질적인 응용의 한계를 극복 할 수 있는 2D 소자로 주목 받고 있다. 본 연구에서는 가장 대표적인 TMD물질인 $MoS_2$를 채널로 가지는 $MoS_2$ FET를 채널의 방향, gate 구조, Equivalent oxide thickness(EOT) 등의 변수에 대하여 시뮬레이션하고, 결과를 종합하여 저전력용 2D FET 모델을 제안하였다.

  • PDF

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.

Analysis of Device Characteristics of NMOSFETs on Fluorine Implantation (Fluorine 주입에 따른 NMOSFET의 소자 특성 연구)

  • Kwon, Sung-Kyu;Kwon, Hyuk-Min;Lee, Hwan-Hee;Jang, Jae-Hyung;Kwak, Ho-Young;Go, Sung-Yong;Lee, Weon-Mook;Lee, Song-Jae;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-23
    • /
    • 2012
  • In this paper, we investigated the device performance on fluorine implantation, hot carrier reliability and RTS (random telegraph signal) noise characteristics of NMOSFETs. The capacitance of the fluorine implanted NMOSFET decreased due to the increase of the gate oxide thickness. RTS noise characteristics of the fluorine implated NMOSFET was improved approximately by 46% due to the decrease of trap density at Si/$SiO_2$ interface. The improved gate oxide quality also results in the longer hot carrier life time.

A study on the growth of $Al_2{O_3}$ insulation films and its application ($Al_2{O_3}$절연박막의 형성과 그 활용방안에 관한 연구)

  • 김종열;정종척;박용희;성만영
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • Aluminum oxide($Al_2{O_3}$) offers some unique advantages over the conventional silicon dioxide( $SiO_{2}$) gate insulator: greater resistance to ionic motion, better radiation hardness, possibility of obtaining low threshold voltage MOS FETs, and possibility of use as the gate insulator in nonvolatile memory devices. We have undertaken a study of the dielectric breakdown of $Al_2{O_3}$ on Si deposited by GAIVBE technique. In our experiments, we have varied the $Al_2{O_3}$ thickness from 300.angs. to 1400.angs. The resistivity of $Al_2{O_3}$ films varies from 108 ohm-cm for films less than 100.angs. to 10$_{13}$ ohm-cm for flims on the order of 1000.angs. The flat band shift is positive, indicating negative charging of oxide. The magnitude of the flat band shift is less for negative bias than for positive bias. The relative dielectric constant was 8.5-10.5 and the electric breakdown fields were 6-7 MV/cm(+bias) and 11-12 MV/cm (-bias).

  • PDF

Characteristics of Hafnium Oxide Gate Dielectrics Deposited by Remote Plasma-enhanced Atomic Layer Deposition using Oxygen Plasma (산소 플라즈마를 이용하여 원거리 플라즈마 원자층 증착법으로 형성된 하프늄 옥사이드 게이트 절연막의 특성 연구)

  • Cho, Seung-Chan;Jeon, Hyeong-Tag;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.263-267
    • /
    • 2007
  • Hafnium oxide $(HfO_2)$ films were deposited on Si(100) substrates by remote plasma-enhanced atomic layer deposition (PEALD) method at $250^{\circ}C$ using TEMAH [tetrakis(ethylmethylamino)hafnium] and $O_2$ plasma. $(HfO_2)$ films showed a relatively low carbon contamination of about 3 at %. As-deposited and annealed $(HfO_2)$ films showed amorphous and randomly oriented polycrystalline structure. respectively. The interfacial layer of $(HfO_2)$ films deposited using remote PEALD was Hf silicate and its thickness increased with increasing annealing temperature. The hysteresis of $(HfO_2)$ films became lower and the flat band voltages shifted towards the positive direction after annealing. Post-annealing process significantly changed the physical, chemical, and electrical properties of $(HfO_2)$ films. $(HfO_2)$ films deposited by remote PEALD using TEMAH and $O_2$ plasma showed generally improved film qualities compare to those of the films deposited by conventional ALD.

New Thyristor Based ESD Protection Devices with High Holding Voltages for On-Chip ESD Protection Circuits

  • Hwang, Suen-Ki;Cheong, Ha-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.150-154
    • /
    • 2019
  • In the design of semiconductor integrated circuits, ESD is one of the important issues related to product quality improvement and reliability. In particular, as the process progresses and the thickness of the gate oxide film decreases, ESD is recognized as an important problem of integrated circuit design. Many ESD protection circuits have been studied to solve such ESD problems. In addition, the proposed device can modify the existing SCR structure without adding external circuit to effectively protect the gate oxide of the internal circuit by low trigger voltage, and prevent the undesired latch-up phenomenon in the steady state with high holding voltage. In this paper, SCR-based novel ESD(Electro-Static Discharge) device with the high holding voltage has been proposed. The proposed device has the lower triggering voltage without an external trigger circuitry and the high holding voltage to prevent latch-up phenomenon during the normal condition. Using TCAD simulation results, not only the design factors that influence the holding voltage, but also comparison of conventional ESD protection device(ggNMOS, SCR), are explained. The proposed device was fabricated using 0.35um BCD process and was measured electrical characteristic and robustness. In the result, the proposed device has triggering voltage of 13.1V and holding voltage of 11.4V and HBM 5kV, MM 250V ESD robustness.

A Study on Breakdown Voltage of Double Gate MOSFET (DGMOSFET의 항복전압에 관한 연구)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.693-695
    • /
    • 2012
  • This paper have presented the breakdown voltage for double gate(DG) MOSFET. The analytical solution of Poisson's equation and Fulop's breakdown condition have been used to analyze for breakdown voltage. The double gate(DG) MOSFET as the device to be able to use until nano scale has the adventage to reduce the short channel effects. But we need the study for the breakdown voltage of DGMOSFET since the decrease of the breakdown voltage is unavoidable. To approximate with experimental values, we have used the Gaussian function as charge distribution for Poisson's equation, and the change of breakdown voltage has been observed for device geometry. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result to observe the breakdown voltage, the smaller channel length and the higher doping concentration become, the smaller the breakdown voltage becomes. Also we have observed the change od the breakdown voltage for gate oxide thickness and channel thickness.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF