• Title/Summary/Keyword: gas-turbines

Search Result 247, Processing Time 0.024 seconds

Cause of Fatigue Failure of the First Blade of 100-MW Gas Turbine (100 MW급 가스터빈 1단 블레이드의 피로파괴 발생 원인)

  • Youn, Hee-Chul;Woo, Chang-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.632-638
    • /
    • 2015
  • Many failures have been reported in gas turbine facilities owing to repeated startups and prolonged use of the turbines. In this study, the causes and mechanism of fatigue failure in the first blade of a gas turbine were analyzed using a finite element method to calculate the centrifugal force, bending force, and a modal analysis based on the stress-stiffening effect and harmonic response under the operating conditions. The results show that, fatigue damage was caused by the resonance conditions encountered, in which the first natural frequency declined along with an increase in the metal temperature of the blade. The position of the expected fatigue damage was shown to match the actual position of the cracking at the root area of the blade, which was on the concave side. In addition, the equivalence fatigue stress was observed to approach the fatigue limit.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

Gas Turbine Data Acquisition System based on LabVIEW (LabVIEW 기반의 가스터빈 데이터 취득 시스템)

  • Kang Feel-Soon;Cha Dong-Jin;Chung Jae-Hwa;Seo Seok-Bin;Ahn Dal-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1082-1087
    • /
    • 2006
  • This paper presents a gas turbine data acquisition and monitoring system using a LabVIEW programming. The developed real-time monitoring system entitled a C-Tune DAS Plays an important role to make an analysis of the real-time operation of the gas turbine under maintenance. the LabVIEW based software is divided into three parts according to their original functions; Data acquisition, Data analysis and display, and Data storage. The data acquisition part receives data from a PMS (Plant Management System) server and two cFPs (Compact-Field Point). To verify the validity of the developed system, it is applied to gas turbines in the combined cycle power plant in Korea.

Thermal Design of Hot Components in the Gas Turbine and Ram Jet (가스터빈 및 램제트의 고온 부품 열설계 기술)

  • Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.437-438
    • /
    • 2008
  • To improve efficiency and allowable life of gas turbine and ram jet, the proper cooling techniques are needed. It is required not only the basic research of variable cooling techniques but also analysis of real operating conditions when we design the cooling system. From the present experimental and analytical results, we can predict the thermal stress and allowable life. This design process is for a thermal design technique that is the most foundational design technique to improve the efficiency of gas turbines and ram jets

  • PDF

A Study on the Step-Up Converter with the New Topology Method (내구성이 개선된 발전용 가스터빈 온도센서 개발에 관한 연구)

  • Lee, Young-Jun;Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1175-1186
    • /
    • 2020
  • In this study, the problem is analyzed, and methods of improvement are presented. For evaluating the performance of the proposed EGT sensor, a complex environment test equipment has been developed to test both high temperature and vibration conditions at the same time. This equipment evaluates the accuracy and response time of the EGT sensor. In the results of the comparison test of the complex environment test equipment of heat and vibration, the existing sensor showed a carbonization problem, and the proposed sensor showed no problem. Therefore, it is expected that the improved EGT sensor will be able to be applied to various industrial fields, including gas turbines for power generation.

Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload (예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구)

  • Yang, Seong-Heon;Park, Chul-Hyun;Ha, Hyun-Cheon;Kim, Chae-Sil
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants (원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구)

  • Yang, Jong Dae;Yang, Seok Jo;Lee, Yong Bum
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.