DOI QR코드

DOI QR Code

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang (Mechanical Engineering Department, Faculty of Engineering, Khon Kaen University (KKU)) ;
  • Kiatfa, Tangchaichit (Mechanical Engineering Department, Faculty of Engineering, Khon Kaen University (KKU))
  • Received : 2021.01.24
  • Accepted : 2022.11.09
  • Published : 2022.12.25

Abstract

The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Keywords

Acknowledgement

The authors would like to acknowledge the National Research Council of Thailand (NRCT) and the Center for Alternative Energy Research and Development, Khon Kaen University (AERD-KKU) for the grants supporting this study.

References

  1. Adaramola, M.S., Agelin-Chaab, M. and Paul, S.S. (2014), "Assessment of wind power generation along the coast of Ghana", Energ. Convers. Manage., 77, 61-69. https://doi.org/10.1016/j.enconman.2013.09.005.
  2. Al-Soud, M.S. and Hrayshat, E.S. (2009), "Feasibility of wind energy for electrification of rural Jordanian sites", Clean Technol. Environ. Policy, 2(11), 215-237. https://doi.org/10.1007/s10098-008-0194-z.
  3. Anon (2019), Energy regulation commission (ERC), Thailand http://www.erc.or.th/ERCSPP/default.aspx?x=0&muid=23&prid=41.
  4. Arrambide, I., Zubia, I. and Madariaga, A. (2019), "Critical review of offshore wind turbine energy production and site potential assessment", Electr. Pow. Syst. Res., 167, 39-47. https://doi.org/10.1016/j.epsr.2018.10.016.
  5. Bandyopadhyay, S. (2017), "Renewable targets for India", Clean Technol. Environ. Policy, 19(2), 293-294. https://doi.org/10.1007/s10098-017-1335-z.
  6. Baseer, M.A., Meyer, J.P., Alam, M.M. and Rehman, S. (2015), "Wind speed and power characteristics for Jubail industrial city, Saudi Arabia", Renew. Sust. Energ. Rev., 52, 1193-1204. https://doi.org/10.1016/j.rser.2015.07.109.
  7. Belabes, B., Youcefi, A., Guerri, O., Djamai, M. and Kaabeche, A. (2015), "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in North of Algeria", Renew. Sust. Energ. Rev., 51, 1245-1255. https://doi.org/10.1016/j.rser.2015.07.043.
  8. Bilgili, M., Ekinci, F. and Demirdelen. T. (2021), "A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms", Wind Struct., 32(2), 81-87. https://doi.org/10.12989/was.2021.32.2.081.
  9. Byrne, R., Hewitt, N.J., Griffiths, P. and MacArtain, P. (2018), "Observed site obstacle impacts on the energy performance of a large scale urban wind turbine using an electrical energy rose", Energ. Sust. Develop., 43, 23-37. https://doi.org/10.1016/j.esd.2017.12.002.
  10. Chaichana, T. and Chaitep, S. (2010), "Wind power potential and characteristic analysis of Chiang Mai, Thailand", J. Mech. Sci. Technol., 24(7), 1475-1479. https://doi.org/10.1007/s12206-010-0415-3.
  11. Dabbaghiyan, A., Fazelpour, F., Abnavi, M.D. and Rosen, M.A. (2016), "Evaluation of wind energy potential in province of Bushehr, Iran", Renew. Sust. Energ. Rev., 55, 455-466. https://doi.org/10.1016/j.rser.2015.10.148.
  12. Duan, S., Song, W., Cattani, C., Yasen, Y. and Liu, H. (2020), "Fractional levy stable and maximum lyapunov exponent for wind speed prediction", Symmetry, 12(4), 605. https://doi.org/10.3390/sym12040605.
  13. Duan, S., Song, W., Zio, E., Cattani, C. and Li, M. (2021), "Product technical life prediction based on multi-nodes and fractional levy Stable motion", Mech. Syst. Signal Pr., 161, 107974. https://doi.org/10.1016/j.ymssp.2021.107974.
  14. Fang, H.F. (2014), "Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago", Renew. Energ., 67, 237-241. https://doi.org/10.1016/j.renene.2013.11.047.
  15. Global Wind Energy Council, GWEC (2012), http://www.gwec.net[www.gwec.net.
  16. Global Wind Report (2021), https://gwec.net/wpcontent/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf.
  17. Google Map (2022), https://www.google.co.th/maps/@16.1480001,102.7095551,710m/data=!3m1!1e3?hl=en.
  18. Gurlek, C., Sahin, M. and Akkoyun, S. (2021), "Estimation of the wind speed in Sivas province by using the artificial neural networks", Wind Struct., 32(2), 161-167. https://doi.org/10.12989/was.2021.32.2.161.
  19. Hamzah, N.H. and Usman, F. (2019), "Geospatial analysis of wind velocity to determine wind loading on transmission tower", Wind Struct., 28(6), 381-388. https://doi.org/10.12989/was.2019.28.6.381.
  20. Hossain, F.M., Hasanuzzaman, M., Rahim, N.A. and Ping, H.W. (2015), "Impact of renewable energy on rural electrification in Malaysia: A review", Clean Technol. Environ. Policy, 17(4), 859-871. https://doi.org/10.1007/s10098-014-0861-1.
  21. Hwang, Y., Paek, I., Yoon, K., Lee, W., Yoo, N. and Nam, Y. (2010), "Application of wind data from automated weather stations to wind resources estimation in Korea", J. Mech. Sci. Technol., 24(10), 2017-2023. https://doi.org/10.1007/s12206-010-0613-z.
  22. Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 187-197. https://doi.org/10.12989/was.2018.27.3.187.
  23. Janjai, S., Masiri, I., Promsen, W., Pattarapanitchai, S., Pankaew, P., Laksanaboonsong, J., Bischoff-Gauss, I. and Kalthoff, N. (2014), "Evaluation of wind energy potential over Thailand by using an atmospheric mesoscale model and a GIS approach", J. Wind Eng. Ind. Aerod., 129, 1-10. https://doi.org/10.1016/j.jweia.2014.03.010.
  24. Karthikeya, B.R., Negi, P.S. and Srikanth, N. (2016), "Wind resource assessment for urban renewable energy application in Singapore", Renew. Energ., 87, 403-414. https://doi.org/10.1016/j.renene.2015.10.010.
  25. Lema, R., Sagar, A. and Zhou, Y. (2016), "Convergence or divergence? wind power innovation paths in Europe and Asia", Sci. Public Policy, 43(3), 400-413. https://doi.org/10.1093/scipol/scv049.
  26. Lim, H.C. (2012), "Short-term observation of wind energy potentiality in the Wol-Ryong wind site", J. Mech. Sci. Technol., 26(11), 3711-3721. https://doi.org/10.1007/s12206-012-0846-0.
  27. Liu, H., Song, W., Zhang, Y. and Kudreyko, A. (2021), "Generalized cauchy degradation model with long-range dependence and maximum lyapunov exponent for remaining useful life", IEEE T. Instrum. Meas., 70, 1-12. https://doi.org/10.1109/TIM.2021.3063749.
  28. Liu, Y., Li, Y., He, F. and Wang, H. (2017), "Comparison study of tidal stream and wave energy technology development between China and some western countries", Renew. Sust. Energ. Rev., 76, 701-716. https://doi.org/10.1016/j.rser.2017.03.049.
  29. Nagar, S.K., Raj, R. and Dev, N. (2020), "Experimental study of wind-induced pressures on tall buildings of different shapes", Wind Struct., 31(5), 431-443. https://doi.org/10.12989/was.2020.31.5.431.
  30. Ohunakin, O.S. and Akinnawonu, O.O. (2012), "Assessment of wind energy potential and the economics of wind power generation in Jos, Plateau State, Nigeria", Energ. Sust. Develop., 16(1), 78-83. https://doi.org/10.1016/j.esd.2011.10.004.
  31. Ozkan, R., Sen, F. and Balli, S. (2020), "Evaluation of wind loads and the potential of Turkey's south west region by using lognormal and gamma distributions", Wind Struct., 31(4), 299-309. https://doi.org/10.12989/was.2020.31.4.299.
  32. Peng, Y., Zhao, W. and Ai, X. (2019), "Field measurement and CFD simulation of wind pressures on rectangular attic", Wind Struct., 29(6), 471-488. https://doi.org/10.12989/was.2019.29.6.471.
  33. Power Development Plan (2018), https://www.egat.co.th/index.php?option=com_content&view=article&id=325&Itemid=207.
  34. Quan, P. and Leephakpreeda, T. (2015), "Assessment of wind energy potential for selecting wind turbines: An application to Thailand", Sust. Energ. Technol. Assess., 11, 17-26. https://doi.org/10.1016/j.seta.2015.05.002.
  35. Ranthodsang, M., Waewsak, J., Kongruang, C. and Gagnon, Y. (2020), "Offshore wind power assessment on the western coast of Thailand", Energy Reports, 6, 1135-1146. https://doi.org/10.1016/j.egyr.2020.04.036.
  36. Sawangphol, N. and Pharino, C. (2011), "Status and outlook for Thailand's low carbon electricity development", Renew. Sust. Energ. Rev., 15(1), 564-573. https://doi.org/10.1016/j.rser.2010.07.073.
  37. Shu, Z.R., Li, Q.S. and Chan, P.W. (2015), "Statistical analysis of wind characteristics and wind energy potential in Hong Kong", Energ. Convers. Manage., 101, 644-657. https://doi.org/10.1016/j.enconman.2015.05.070.
  38. Singh, A.K. and Parida, S.K. (2013), "Evaluation of current status and future directions of wind energy in India", Clean Technol. Environ. Policy, 15(4), 643-655. https://doi.org/10.1007/s10098-012-0554-6.
  39. Solyali, D., Altunc, M., Tolun, S. and Aslan, Z. (2016), "Wind resource assessment of Northern Cyprus", Renew. Sust. Energ. Rev., 55, 180-187. https://doi.org/10.1016/j.rser.2015.10.123.
  40. Sukkiramathi, K., Rajkumar R. and Seshaiah C.V. (2020), "Evaluation of wind power potential for selecting suitable wind turbine", Wind Struct., 31(4), 311-319. https://doi.org/10.12989/was.2020.31.4.311.
  41. Taner, T. (2018), "Economic analysis of a wind power plant: A case study for the Cappadocia region", J. Mech. Sci. Technol., 32(3), 1379-1389. https://doi.org/10.1007/s12206-018-0241-6.
  42. Tizpar, A., Satkin, M., Roshan, M.B. and Armoudli, Y. (2014), "Wind resource assessment and wind power potential of Mil-E Nader region in Sistan and Baluchestan Province, Iran-Part 1: Annual energy estimation", Energ. Convers. Manage., 79, 273-280. https://doi.org/10.1016/j.enconman.2013.10.004.
  43. Waewsak, J., Kongruang, C. and Gagnon, Y. (2017), "Assessment of wind power plants with limited wind resources in developing countries: Application to Ko Yai in southern Thailand", Sust. Energ. Technol. Assess., 19, 79-93. https://doi.org/10.1016/j.seta.2016.12.001.
  44. Waewsak, J., Landry, M. and Gagnon, Y. (2015), "Offshore wind power potential of the Gulf of Thailand", Renew. Energ., 81, 609-626. https://doi.org/10.1016/j.renene.2015.03.069
  45. Windowgrapher (2019), https://aws-dewi.ul.com/windographer/.