• 제목/요약/키워드: gas sensing response

검색결과 255건 처리시간 0.032초

온도 가스 감지 다기능성 세라믹 복합 센서 (Temperature and Gas Sensing Multifunctional Ceramic Sensors)

  • 문희규;심영석;김도홍;류정호;김진상;박형호;박동수;윤석진;장호원
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.646-650
    • /
    • 2012
  • Multifunctional structures with two kinds of materials have been intensively investigated in order to improve their electrical characteristic with two functions simultaneously. However, the research regarding of multifunctional ceramic sensor is still in a preliminary stage and how to integrate them with low-cost and high-yield mass production process remains a challenge issue. In this study, we fabricated the multifunctional ceramic sensor composed of temperature and gas sensors. Moreover, we investigated the CO sensing properties of three dimensional nanostuctured $Nb_2O_5$ thin film gas sensors fabricated with silica ($SiO_2$ nanosphere (${\O}$= 750 nm). Compared to plain films, the nanostructured films show enhanced gas sensing of greater sensitivity and a faster response. This result reveals that significantly increased sensitivity is an increase in the effective surface area for the adsorption of gas molecules.

전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성 (Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam)

  • 이상민;정민정;이경민;이영석
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.299-305
    • /
    • 2017
  • 활성탄소섬유가 전사선 조사에 의해 표면 개질되었고, NO가스 감지 능력에 미치는 영향을 살펴보기 위하여 이를 가스센서 전극으로 이용하였다. XPS 분석결과는 전자선에 의하여 표면처리된 활성탄소섬유의 산소 성분이 감소하였으며 표면의 $sp^2$ 결합탄소가 증가한 것을 보여주었다. 이러한 결과는 전자빔 조사에 따른 활성탄소섬유 표면의 구조적 변형때문으로 사료된다. 100 kGy의 전자빔이 조사된 활성탄소섬유 전극의 NO가스 민감도는 약 4%에서 약 8%로 크게 증가하였고, 그 감지 시간 또한 약 360 s에서 120 s로 의미 있게 향상되었다. 이러한 결과는 활성탄소섬유의 전자빔 조사에 의하여 $sp^2$ 탄소 결합의 증가때문에 기인한 것으로, 이는 NO가스 센싱에 대한 전극저항 변화에 상당히 영향을 주었다.

산화주석을 기반으로 한 DMMP 후막가스센서 제작 (fabrication of DMMP Thick Film Gas Sensor Based on SnO2)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1217-1223
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is dimethyl methyl phosphonate(C$_3$ $H_{9}$ $O_3$P, DMMP) that is simulant gas of nerve gas. Sensing materials were Sn $O_2$ added a-Al$_2$ $O_3$ with 0∼20wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor device was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Total size of device was 7${\times}$10${\times}$0.6㎣. Crystallite size & phase identification and morphology of fabricated Sn $O_2$ powders were analyzed by X-ray diffraction and by a scanning electron microscope, respectively. Fabricated sensor was measured as flow type and resistance change of sensing material was monitored as real time using LabVIEW program. The best sensitivity was 75% at adding 4wt.% $\alpha$-Al$_2$ $O_3$, operating temperature 30$0^{\circ}C$ to DMMP 0.5ppm. Response and recovery time were about 1 and 3min., respectively. Repetition measurement was very good with $\pm$3% in full scale.TEX>$\pm$3% in full scale.

$SnO_2$ 나노와이어를 이용한 NOx 가스센서 제작 및 특성평가 (Fabrication and Characteristic of NOx Gas Sensor by Using $SnO_2$ Nanowires)

  • 강교성;권순일;박재환;양계준;임동건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.40-41
    • /
    • 2007
  • $SnO_2$ nanowires are used at the nanoscale level for the electrical transduction of the gas interaction with these sensing materials. We report on a study of high sensitivity and fast NOx gas sensor. We focused on improving the response time and refresh time by growth nanowires on the trench structure of Si substrate as air path. To improve refresh time we applied the trench structure with depth of $10\;{\mu}m$ by the inductively coupled plasma reactive ion etching(ICP-RIE). The fabricated device was measured at temperature of $200{\sim}300^{\circ}C$. The sensor exhibit ultra-fast and reversible electrical response (t90% ~4 s for response and ~3 s for recovery).

  • PDF

수정진동자에 의한 감응성막의 유기가스 응답특성 분석 (Analysis of Response Characteristics for Organic Gas of Polymeric Sensitive Films by Using Q. C. M.)

  • 김경철;김정명;장상목;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 1996
  • In this paper, the response characteristics of organic gases were investigated by using quartz crystal microbalance(Q.C.M) with different polymeric sensitive materials. The new linear parameter was discussed in order to develope gas sensing system using neural network and pattern recognition. We analyzed the response characteristics by the area of resonant frequency shift of quartz crystal, which mean affinities of organic gases for polymeric sensitive firm. The experimental results shows that the parameter made by the area of frequency shift which was linear with injection amount of organic gases has possibility to be used for pattern recognition and neural network. And they have different normalized pattern.

  • PDF

수열합성법으로 제조된 Co3O4 분말을 사용한 후막 가스센서의 가스감지 특성 (The Gas Sensing Properties of Thick Film Gas Sensor Using Co3O4 Powder Prepared by Hydrothermal Reaction Method)

  • 김광희;김정규;박기철
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.406-411
    • /
    • 2011
  • $Co_3O_4$ thick film gas sensor using the powder prepared by hydrothermal reaction method(HRM) was fabricated. For comparison study, we also prepared the sensor using commercial $Co_3O_4$ powder under the same fabrication conditions. Sensitivity, time response, and selectivity of them to variable gases such as iso-$C_4H_{10}$, CO, $NH_3$, and $CH_4$ were investigated. The sensor from the powder prepared by HRM showed higher sensitivity to every gas than those from commercial powder. For iso-$C_4H_{10}$ gas, the sensitivities of both sensor to 100 ppm are 160 % and 40 %, respectively. Time response and selectivity of the sensor using the powder prepared by HRM were better than those of the sensor using commercial powder.

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Chemiresistive Sensor Based on One-Dimensional WO3 Nanostructures as Non-Invasive Disease Monitors

  • Moon, Hi Gyu;Han, Soo Deok;Kim, Chulki;Park, Hyung-Ho;Yoon, Seok-Jin
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.291-294
    • /
    • 2014
  • In this study, a chemiresistive sensor based on one-dimensional $WO_3$ nanostructures is presented for application in non-invasive medical diagnostics. $WO_3$ nanostructures were used as an active gas sensing layer and were deposited onto a $SiO_2/Si$substrate using Pt interdigitated electrodes (IDEs). The IDE spacing was $5{\mu}m$ and deposition was performed using RF sputter with glancing angle deposition mode. Pt IDEs fabricated by photolithography and dry etching. In comparison with thin film sensor, sensing performance of nanostructure sensor showed an enhanced response of more than 20 times when exposed to 50 ppm acetone at $400^{\circ}C$. Such a remarkable faster response can pave the way for a new generation of exhaled breath analyzers based on chemiresistive sensors which are less expensive, more reliable, and less complicated to be manufactured. Moreover, presented sensor technology has the potential of being used as a personalized medical diagnostics tool in the near future.

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성 (Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas)

  • 이지영;유일
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.