• Title/Summary/Keyword: gas production

Search Result 2,690, Processing Time 0.035 seconds

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Propane Reforming in Gliding Arc Plasma Reformer for SynGas Generation (합성가스 생성을 위한 글라이딩 아크 플라즈마 개질기에서 프로판 개질)

  • Yang, Yoon-Cheol;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.869-875
    • /
    • 2009
  • The purpose of this paper is to investigate the optimal condition of the syngas production by reforming of propane using Gliding arc plasma reformer. The gliding arc plasma reformer in 3 phases has been newly designed and developed with a quick starting and fast response time. It can be applicable to the various types of fuels (Hydrocarbons $C_xH_y$), and it has a high conversion rate of fuels and high production of hydrogen. The parametric screening studies were carried out according to the changes of a steam feed amount i.e., steam/carbon ratio, total gas flow rate and input electric power. The optimum operating conditions were S/C ratio 2.8, total gas flow rate of 14 L/min and input electric power of 2.4 kW. The result of optimum operating conditions showed the 55 % $H_2$, 14 % CO, 15 % $CO_2$, 10 % $C_3H_8$ and 4 % $CH_4$. Also, $C_3H_8$ conversion, $H_2$ yield and $H_2$ selectivity were 90 %, 42 %, 15 %, respectively. The energy efficiency and specific energy requirements were 37 % and 334 kJ/mol respectively.

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

A Debris Bed Model with Gab Inflow and Gas Upflow for Debris/Water/Concrete Interaction and Its Application under Severe Accident Condition in LWR. (개스 Inflow와 Upflow를 갖는 Debris/water/concrete상호작용 해석용 Debris Bed 모델 및 중대사고 조건에 그 적용해석)

  • Jong In Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 1985
  • A model for thermal interactions of debris/water with gas flow from within and below debris bed was presented for severe accident analysis in LWR. The consumption of steam, production of hydrogen in the debris bed, generation of gases from below debris bed and generation of chemical heat are included in the conservation equations. The model has been incorporated in the MARCH code to estimate the gas production due to both metal/oxidation and hot debris/concrete interaction. The results indicate that the hydrogen source can potentially give a significant impact on the containment pressure transient and the conductive heat loss to concrete and the convective gas cooling in the debris bed have a small effect on the debris bed coolability. However, the reheating and melting of the debris particles could be delayed by the interaction of debris with concrete.

  • PDF

A study on method for reducing haze defects of head lamp for automobiles (자동차용 헤드램프의 플라스틱 소재 Haze 저감 방법에 관한 연구)

  • Lee, Seung-Wook;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.32-36
    • /
    • 2021
  • In this study, the cause of the decrease in transmittance of the outer lens among the causes of the decrease in the amount of light in the automobile headlamp was identified, and the improvement method was selected to determine the effect. The causes of defects that lower the transmittance of the outer lens are divided into a moisture problem and a haze problem. The moisture problem is caused by the temperature difference between the inside and the outside of the head lamp, and the haze problem occurs when the heat inside the head lamp evaporates the haze component contained in the plastic material and attaches it to the outer lens. In order to improve the haze problem that occurs in plastic raw materials, the structures of the bulb light source type headlamp and the LED chip light source type headlamp were analyzed. Among them, the housing material of the LED chip light source type headlamp, which is structurally prone to haze gas, was selected as the test target. In the mass-production injection process of the housing, the drying process was selected as a method to minimize haze gas without adding a separate production process. After extracting a sample every drying time at a constant drying temperature, the sample was put into a haze tester and the residual amount of haze gas was measured. As a result, it was confirmed that the residual amount of Haze gas in the material decreased as the drying time increased.

Optimization of Anaerobic Process by Enzyme Treatment of High Concentration Organic Substances in Food Wastewater

  • Tae-Hwan JEONG;Woo-Taeg KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.2
    • /
    • pp.33-37
    • /
    • 2023
  • Purpose: Since 2013, marine dumping of wastewater has been banned, and research on eco-friendly and efficient land treatment has emerged. This study compared and tested changes in biogas production and anaerobic process efficiency depending on whether or not enzyme pretreatment was performed during anaerobic digestion from single-phase and two-phase to medium-temperature. Research design, data and methodology: The total sugar, direct sugar, pH, and acidity before and after fermentation were analyzed by G/C by anaerobic fermentation of the liquor wastewater, food wastewater 1, and food wastewater 2 at 30℃ for 67 hours, and the amount of methane gas generated was analyzed by balloon volume. Results: It was found that stable organic acid concentration and pH were found in the enzyme-treated food wastewater 2, and the amount of methane gas generated was also increased. Conclusions: When anaerobic digestion of the liquor wastewater and the food wastewater together, the performance of enzyme pretreatment resulted in increased digestive efficiency. It will be the basic data that can contribute to carbon neutrality and greenhouse gas reduction by increasing the production of biogas.

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

A Case Study on the PDM Client for Oil & Gas Production Platform (Oil & Gas 생산 플랜트 적용을 위한 PDM Client 개발 사례)

  • 조형태;안호준;박찬국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2001.11a
    • /
    • pp.367-372
    • /
    • 2001
  • Oil & Gas 플랜트의 PDM 구축과정에서 서버의 구성은 만족스러웠으나, 클라이언트 부분의 경우 모든 작업환경에 최적화되기에는 한계를 가진다. 본 보고서에서는 개발 Toolkit과 4GL을 이용하여 플랜트 PDM을 사용자가 보다 편리하고, 빠르게 적용할 수 있는 클라이언트 프로그램의 작성에 대한 사례를 살펴본다. 본문의 내용은 실제 구현되어진PDM의 기능들을 기술한다.

  • PDF