DOI QR코드

DOI QR Code

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Received : 2022.04.15
  • Accepted : 2022.05.24
  • Published : 2022.06.30

Abstract

This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 2019281010007B).

References

  1. https://www.energy.gov/eere/solar/solar-energy-united-states "Solar Energy in the United States" (accessed Jan. 2022).
  2. http://www.caiso.com/informed/Pages/ManagingOversupply. aspx "California ISO - Managing Oversupply" (accessed Jan. 2022).
  3. https://world-nuclear.org/information-library/currentandfuture- generation/electricity-and-energy-storage.aspx "Electricity and Energy Storage" (accessed Jan. 2022).
  4. https://www.brookings.edu/research/wind-curtailment-inchina- and-lessons-from-the-united-states/ "Wind curtailment in China and lessons from the United States" (accessed Jan. 2022).
  5. Schaber, C., Mazza, P., Hammerschlag, R., "Utility-scale storage of renewable energy", Electr. J., 17(6), 21-29 (2004). https://doi.org/10.1016/j.tej.2004.05.005
  6. Poullikkas, A., "A comparative overview of large-scale battery systems for electricity storage", Renew. Sustain. Energy Rev., 27, 778-788 (2013). https://doi.org/10.1016/j.rser.2013.07.017
  7. Burheim, O.S., "Hydrogen for Energy Storage", in: Eng. Energy Storage, Elsevier, 147-192 (2017).
  8. Wulf, C., Linben, J., Zapp, P., "Review of power-to-gas projects in Europe", in: Energy Procedia, Elsevier, 367-378 (2018).
  9. Clegg, S., Mancarella, P., "Storing renewables in the gas network: Modeling of power-to-gas seasonal storage flexibility in low-carbon power systems", IET Gener. Transm. Distrib., 10(3), 566-575 (2016). https://doi.org/10.1049/iet-gtd.2015.0439
  10. Quarton, C.J,. Samsatli, S., "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modeling?", Renew. Sustain. Energy Rev., 98, 302-316 (2018). https://doi.org/10.1016/j.rser.2018.09.007
  11. DDwivedi, S.K., Vishwakarma, M., "Hydrogen embrittlement in different materials: A review", Int. J. Hydrogen Energy. 43(46), 21603-1616 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.201
  12. https://afdc.energy.gov/fuels/natural_gas_production.html "Alternative Fuels Data Center: Natural Gas Production" (accessed Jan. 2022).
  13. https://www.eia.gov/energyexplained/natural-gas/where-ournatural-gas-comes-from.php "Where our natural gas comes from - U.S. Energy Information Administration (EIA)" (accessed Jan. 2022).
  14. Hou, Y., Vidu, R., Stroeve, P., "Solar energy storage methods", Ind. Eng. Chem. Res., 50(15), 8954-8964 (2011). https://doi.org/10.1021/ie2003413
  15. Qiao, J., Liu, Y., Hong, F., Zhang, J., "A review of catalysts for the electro-reduction of carbon dioxide to produce low-carbon fuels", Chem. Soc. Rev., 43(2) 631-675 (2014).
  16. Ager, J.W., Lapkin, A.A., "Chemical storage of renewable energy", Science, 360(6390), 707-708 (2018). https://doi.org/10.1126/science.aat7918
  17. Ursua, A., Gandia, L. M., Sanchis, P., "Hydrogen production from water electrolysis: current status and future trends" Proc. IEEE, 100(2), 410-426 (2018). https://doi.org/10.1109/JPROC.2011.2156750
  18. Mills, G.A., Steffgen, F.W., "Catalytic methanation", Catal. Rev., 8, 159-210 (1974). https://doi.org/10.1080/01614947408071860
  19. Ronsch, S., Schneider, J., Matthischke, S., Schluter, M., Gotz, M., Lefebvre, J., Prabhakaran, P., Bajohr, S., "Review on methanation - From fundamentals to current projects", Fuel, 166, 276-296 (2016). https://doi.org/10.1016/j.fuel.2015.10.111
  20. Schubert, K.,Brandner, J., Fichtner, M., Linder, G., Schygulla, U.,Wenka, A., "Microstructure devices for applications in thermal and chemical process engineering", Microscale Thermophys. Eng., 5, 17-39 (2001). https://doi.org/10.1080/108939501300005358
  21. Liu, Z., Chu, B., Zhai, X., Jin, Y., Cheng, Y., "Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor", Fuel, 95, 599-05 (2012). https://doi.org/10.1016/j.fuel.2011.12.045
  22. Brooks, K.P., Hu, J., Zhu, H., Kee, R.J., "Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors", Chem. Eng. Sci., 62, 1161-1170 (2007). https://doi.org/10.1016/j.ces.2006.11.020
  23. Glenk, G., Reichelstein, S., "Economics of converting renewable power to hydrogen", Nat. Energy, 4, 216-222 (2019). https://doi.org/10.1038/s41560-019-0326-1
  24. Winkler-Goldstein, R., Rastetter, A., "Power to gas: the final breakthrough for the hydrogen economy?", Green, 3(1), 69-78R (2013). https://doi.org/10.1515/green-2013-0001
  25. Gahleitner, G., "Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications", Int. J. Hydrogen Energy, 38(5), 2039-2061 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.010
  26. Bailera, M., Lisbona, P., Romeo, L. M., Espatolero, S., "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2", Renew. Sustain. Energy Rev., 69, 292-312 (2017). https://doi.org/10.1016/j.rser.2016.11.130
  27. Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., Stolten, D., "Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany", Int. J. Hydrogen Energy, 40(12), 4285-4294 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.123
  28. Gotz, M., Lefebvre, J., Mors, F., Koch, A.M., Graf, F.; Bajohr, S., Reimert, R., Kolb, T., "Renewable Power-to-Gas: A technological and economic review", Renew. Energy, 85, 1371-1390 (2016). https://doi.org/10.1016/j.renene.2015.07.066
  29. https://www.aspentech.com/en/products/engineering/aspenplus "The Leading Process Simulation Software in the Chemical Industry" (accessed Jan. 2022).
  30. https://www.energy.gov/sites/prod/files/2016/09/f33/CHP-Steam%20Turbine.pdf "Combined Heat and Power TechnologyFact Sheet Series" (accessed Jan. 2022).
  31. https://www.energy. gov/eere/fuelcells/doe-technical-targetshydrogen-production-electrolysis "DOE Technical Targets for Hydrogen Production from Electrolysis | Department of Energy" (accessed Jan. 2022).
  32. https://www.matche.com/equipcost/Reactor.html "Matches' Reactor cost - autoclave, fermenter, kettle, mixer settler" (accessed Jan. 2022).
  33. Dutta, A., Schaidle, J.A., Humbird, D., Baddour, F.G., Sahir, A., "Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility", Top. Catal., 59, 2-18 (2016). https://doi.org/10.1007/s11244-015-0500-z
  34. Gorre, J., Ortloff, F., van Leeuwen, C., "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage", Appl. Energy, 253, 113594 (2019). https://doi.org/10.1016/j.apenergy.2019.113594
  35. Bohm, H., Zauner, A., Rosenfeld, D.C., Tichler, R., "Projecting cost development for future large-scale power-to-gas implementations by scaling effects", Appl. Energy, 264, 114780 (2020). https://doi.org/10.1016/j.apenergy.2020.114780
  36. Szima, S., Cormos, C. C., "CO2 Utilization Technologies: A Techno-Economic Analysis for Synthetic Natural Gas Production", Energies, 14, 1258 (2021). https://doi.org/10.3390/en14051258
  37. Mathiesen, B.V., Ridjan, I., Connolly, D., Nielsen, M.P., Hendriksen, P.V., Mogensen, M.B., Jensen, S.H., Ebbesen, S.D., "Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers", https://vbn.aau.dk/en/publications/technology-data-for-high-temperature-solid-oxide-electrolyser-cel (2013, accessed Jan. 2022).
  38. Julch, V., "Comparison of electricity storage options using levelized cost of storage (LCOS) method", Appl. Energy, 183, 1594-1606 (2016). https://doi.org/10.1016/j.apenergy.2016.08.165
  39. Smolinka, T., Gunther, M., Garche , J., "Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien", https://www. now-gmbh.de/wp-content/uploads/2020/09/now-studie-wasser elektrolyse-2011.pdf (2010, accessed Jan. 2022).
  40. Vanhoudt, W.,Barth, F., Lanoix, J.-C., Neave, J., Patrick, H., Schmidt, R., Weindorf, W., Zerhusen, J., Michalski, J., "Power-to-gas Short term and long term opportunities to leverage synergies between the electricity and transport sectors through power-to-hydrogen", https://www.hinicio.com/file/2016/06/Fondation_Tuck_PtH2_Study_Hinicio_LBST.pdf (2016)
  41. Brouwer, J., "Realizing a Renewable Energy Future through Power-to-Gas California Fuel Cell Partnership", https://cafcp.org/sites/default/files/20170425_EB_3_RH2-Brouwer2.pdf (2017, accessed Jan. 2022).
  42. Lux, B., Pfluger, B., "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050", Appl. Energy, 269, 115011 (2020). https://doi.org/10.1016/j.apenergy.2020.115011
  43. Rozzi, E, Minuto, F.D., Lanzini, A., Leone, P., "Green synthetic fuels: Renewable routes for the conversion of non-fossil feedstocks into gaseous fuels and their end uses", Energies, 13, 420 (2020). https://doi.org/10.3390/en13020420
  44. Nicodemus, J.H., "Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV", Energy Policy, 120, 100-109 (2010). https://doi.org/10.1016/j.enpol.2018.04.072