• Title/Summary/Keyword: gas absorbents

Search Result 39, Processing Time 0.039 seconds

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

A Study on Wet Process of $H_2S$ removal with MDEA (MDEA를 이용한 $H_2S$의 습식탈황 고찰)

  • Han, Keun-Hee;Jo, A-Ra;Lee, Jong-Seup;Min, Byoung-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.238-241
    • /
    • 2008
  • In this study, absorption behaviors of absorbents and additives were measured for removing of $H_2S$ and COS from syn-gas in IGCC process, such as MDEA and HMDA. The experimental variables were concentration of absorbents and reaction temperature. From these experiments, the loading ratios of $H_2S$ were decreased with increasing of concentration of absorbents and absorption temperatures. These results will be applied to basic data for designing of $H_2S$ removal process in IGCC.

  • PDF

SO2 Removal by Internal Circulation of de-SOx Absorbents (흡수제 내부순환형 탈황장치의 SO2 제거성능 특성)

  • Park, Young-Ok;Park, Hyun-Jin;Kim, Yong-Ha
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.672-680
    • /
    • 2011
  • Three new granular absorbents were prepared from calcium hydroxide, and applied to an FGD process with internal circulation. The aim of the study was finding the most efficient of the these three applied absorbents for the $SO_2$ removal at high flue gas temperatures. The absorbent is fed to the testing unit at high operation temperature and fluidized inside the FGD system where the sorbent particles react with the $SO_2$ gas. The rate of $SO_2$ decomposition was high in C-type absorbent which had the large surface area. De-SOx characteristics of the current absorbents appeared to be similar to the other conventional agents in this fluidized bed combustor. In particular, the optimum de-SOx condition could be achieved at high mole ratios of Ca to S which can reduce the residual $SO_2$.

CO2 Capture from the Hydrogen Production Processes (수소생산 공정에서의 이산화탄소 포집)

  • Yeon Ki, Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.19-23
    • /
    • 2022
  • Interest in hydrogen production to respond to climate change is increasing. Until now, hydrogen has been mainly produced through the SMR (Steam Methane Reforming) process using natural gas. A large amount of CO2 is emitted in the hydrogen production process through SMR, and the gas flow including CO2 generated in the SMR process has different characteristics for each emission source, so it is important to apply a suitable CO2 capture process. In the case of PSA tail gas or synthesis gas, the applicability of an amine-based process has been confirmed or demonstrated close to a commercial level. However, in the case of the flue gas generated from the reformer, it is still difficult to apply the conventional amine-based process because the partial pressure of CO2 is relatively low. Energy-saving innovative absorbents such as phase separation absorbents can be a solution to these difficulties.

Effects of Operating Variables on Sorption Capacity of CO2 Absorbents for SEWGS Process (SEWGS 공정용 CO2 흡수제들의 흡수능력에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Kim, Hyo-Sung;Lee, Seung-Yong;Lee, Dong-Ho;Kim, Jae-Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.994-1001
    • /
    • 2012
  • The Effects of operating variables on reactivity of two $CO_2$ absorbents (PKM1-SU and P4-600) for SEWGS process were investigated in a pressurized fluidized bed reactor. For both $CO_2$ absorbents, $CO_2$ sorption capacity decreased as the number of absorption-regeneration cycles increased. PKM1-SU absorbent represented higher $CO_2$ sorption capacity than that of P4-600 absorbent. However, P4-600 absorbent represented better performance than PKM1-SU absorbent from the view points of regeneration temperature and regeneration rate. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the steam concentration increased. However, $CO_2$ sorption capacity increased initially as the steam concentration increased from 5% to 10%, but maintained thereafter for P4-600 absorbent. For both $CO_2$ absorbents, $CO_2$ sorption capacity increased as the final regeneration temperature increased. For PKM1-SU absorbent, $CO_2$ sorption capacity increased as the pressure increased and the increment tendency was drastic at higher pressure than 15 bar.

Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents (물리 흡수제를 포함한 디에틸렌트리아민(Diethylenetriamine) 저수계 흡수제에서의 이산화탄소 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;You, Jong-Kyun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this work, N-methyl-2-pyrrolidone (NMP) was added into diethylenetriamine (DETA) aqueous solution for high $CO_2$ loading via phase splitting of absorbents during $CO_2$ absorption. Immiscible two phases were formed in the range of more than 30 wt% of NMP in 2 M DETA + NMP + water absorbents because of low solubility of DETA-carbamate in NMP solution. As the composition of NMP in the absorbents increased, the difference of $CO_2$ loading between each phase increased and the volume of bottom phase decreased. In $CO_2$ absorption in packed column by 2 M DETA + NMP + water absorbents, the absorption rate decreased in the range of more than 40 wt% of NMP. It is due to the increasing of mass transfer resistance in liquid film of absorbents at the high concentration of NMP. DETA + NMP + water absorbent is expected as the promising one for reducing the regeneration energy of absorbents according to volume reduction of $CO_2-rich$ phase.

Effect on the Heat of Reaction to Temperature and Absorption Capacity in the Reaction of Cyclic Amines with Carbon Dioxide (고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향)

  • CHOI, JEONG HO;JANG, JONG TACK;YUN, SOUNG HEE;JO, WON HEE;JUNG, JIN YOUNG;YOON, YEO IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.530-537
    • /
    • 2018
  • The effect of temperature and absorption capacity on heat of reaction, which is one of the characteristic studies of $CO_2$ absorption, were investigated in a differential reaction calorimeter (DRC) by using piperazine (PZ) and 2-methylpiperazine (2-MPZ). For all absorbents, $CO_2$ loading capacity decreased with increasing the temperature, while the heat of reaction increased, it figured out that these had a linear correlation between $CO_2$ loading capacity and/or heat of reaction and the temperature. The heat of reaction of all absorbents increased with increasing $CO_2$ loading capacity, especially 2-MPZ rapidly increased at $70^{\circ}C$. The reason for increase in the heat of reaction was occurred the regeneration of $CO_2$, which is a reverse-reaction, simultaneously with the absorption.

The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System ((H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구)

  • Choi, Jeong Ho;Yun, Soung Hee;Kim, Yeong Eun;Yoon, Yeo Il;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the $CO_2$ loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonance spectroscopy (NMR) had been conducted to characterize the species distribution of the ($H_2O$-piperidine-$CO_2$) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in $H_2O$-piperidine-$CO_2$ system.

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

The CO2 Absorption of Synthetic Amine using the Ethylene Oxide-Ammonia Reaction (에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;NAM, SUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.561-569
    • /
    • 2017
  • In this study, a synthetic amine made using the ethylene oxide-ammonia reaction was used as an absorbent to remove carbon dioxide. Existing absorbents were used in a mix in order to improve performance; however, because the ethylene oxide-ammonia reaction generates primary, secondary, and tertiary amines simultaneously, it has the merit that separate mixing of the absorbents was not needed. The performance of carbon dioxide absorption with the synthetic amine was compared to that of MEA. As a result of an experiment, it was determined that the $CO_2$ loading was 1.15 times better than that of MEA (a commonly used amine), while the cyclic capacity was 2.28 times higher. Because the heat of reaction was 1.10 times lower than for MEA, the synthetic amine showed superior performance in terms of absorption and regeneration.