• Title/Summary/Keyword: gamma ray dose

Search Result 484, Processing Time 0.028 seconds

Development and performance evaluation of large-area hybrid gamma imager (LAHGI)

  • Lee, Hyun Su;Kim, Jae Hyeon;Lee, Junyoung;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2640-2645
    • /
    • 2021
  • We report the development of a gamma-ray imaging device, named Large-Area Hybrid Gamma Imager (LAHGI), featuring high imaging sensitivity and good imaging resolution over a broad energy range. A hybrid collimation method, which combines mechanical and electronic collimation, is employed for a stable imaging performance based on large-area scintillation detectors for high imaging sensitivity. The system comprises two monolithic position-sensitive NaI(Tl) scintillation detectors with a crystal area of 27 × 27 cm2 and a tungsten coded aperture mask with a modified uniformly redundant array (MURA) pattern. The performance of the system was evaluated under several source conditions. The system showed good imaging resolution (i.e., 6.0-8.9° FWHM) for the entire energy range of 59.5-1330 keV considered in the present study. It also showed very high imaging sensitivity, successfully imaging a 253 µCi 137Cs source located 15 m away in 1 min; this performance is notable considering that the dose rate at the front surface of the system, due to the existence of the 137Cs source, was only 0.003 µSv/h, which corresponds to ~3% of the background level.

Degradation of Alginate Solution by Using ${\gamma}-Irradiation$ and Organic Acid (감마선과 유기산을 이용한 알긴산 용액의 저분자화에 대한 연구)

  • Cho, Min;Kim, Byung-Yong;Rhim, Jong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • Alginates were irradiated in an aqueous solution with $Co^{60}$ gamma rays in the dose ranges from 0 to 100 kGy, and investigated the relationship between the intrinsic viscosity $([{\eta}])$ and the molecular weight $(M_w)$ of alginates. The molecular weight of alginate was measured by gel permeation chromatography and the ranges from 1,894 to 135,174 Da were obtained. The molecular weight of alginate decreased markedly with increasing the degree of ${\gamma}-ray$ dose rate. The intrinsic viscosity of alginate solution after ${\gamma}-irradiation$ showed the ranges from 9.83 (g/g) to 602.69 (g/g), depending upon the ${\gamma}-irradiation$ dose. The molecular weight of alginate dependence of the intrinsic viscosity of the alginate solution would be expressed by Mark-Houwink equation. With a linearization of molecular weight and the intrinsic viscosity of the alginate solution, Mark-Houwink equation could be expressed with constant variables and the real data fitted to the equation of $[{\eta}]=2.2{\times}10^{-6}\;{M_w}^{1.656}\;(R^2=0.998)$.

Studies on tussah silkworm, Antheraea pernyi (작잠에 관한 연구)

  • 박병희;송기언;이상풍;박광의
    • Journal of Sericultural and Entomological Science
    • /
    • v.5
    • /
    • pp.25-38
    • /
    • 1965
  • I. Breeding of tussah silkworm(preliminary report). The preliminary examination for bleeding has been carried out since 1963 in tussah silkworms. 1) The strain(l-MG-B)of the heaviest silk quantity was the green silkworm and brown cocoon in univoltine, and the strains(2-G-B, 2-MG-B) of the heaviest silk quantity were also the green silkwom and brown cocoon in bivoltine in both spring and fall in 1965. 2) It looks like the voltinism, the body color and the cocoon color have reached to pure line up to 1965. II. Best place for the winter of tussah pupa. This work was aimed to find out good ways for the winter of tussah pupa. 1) The hatch of bivoltine was better than that of univoltine. 2) The cocoons covered with the leaves were good in the emergence of moth. 3) The cocoons which were kept at natural temperature till the first emergence of moths would show bad in both hatch and emergence. 4) If some of the pupae kept under natural condition were controled at proper temperature for a few days, hatch and laying eggs were best. 5) The best places for the winter were the egg storage and the rearing room. III. Relation between incubation temperature and voltinism. 1) When the tussah pupa are kept at natural temperature during winter, the moths do not come out of the pupa. 2) There is no difference between about 18$^{\circ}C$ and about 25$^{\circ}C$ during incubation in hatching ratio. 3) The tussah silkworms of univoltine in mortality are stronger than that of bivoltine. 4) There is not any relation between voltinism and high or low temperature for pupa and eggs. IV. Induced mutation by gamma-ray and neutron in tussah silkworm. This work was carried out in order to induce the mutation by treating the pupa or the eggs of tussah silkworm with gamma my and neutron. The results obtained are as follows. 1. Though the whole pupa treated with neutron become moths, the moths have no ability to copulate each other. The only moths emerged from pupa treated with neutron, 4000${\gamma}$ are able to lay all un-fertilized eggs, some of which have a hole on the surface and nothing of contents. 2. The non-diapause eggs are treated with neutron in spring, but the hatching ratio is 50∼60 percent, but the whole eggs treated with gamma ray are never hatched. 3. The sensitivity of the pupa to neutron is weaker than that of the eggs. 4. The hatching ratio is in direct proportion to the gamma ray dose. 5. Author find out a new mutant which is excellent in the cocoon quality, so he will do the progeny test next hear.

  • PDF

Organ Dose Assessment of Nuclear Medicine Practitioners Using L-Block Shielding Device for Handling Diagnostic Radioisotopes (진단용 방사성동위원소 취급 시 L-block 차폐기구 사용에 따른 핵의학 종사자의 장기 선량평가)

  • Kang, Se-Sik;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • In the case of nuclear medicine practitioners in medical institutions, a wide range of exposure dose to individual workers can be found, depending on the type of source, the amount of radioactivity, and the use of shielding devices in handling radioactive isotopes. In this regard, this study evaluated the organ dose on practitioners as well as the dose reduction effect of the L-block shielding device in handling the diagnostic radiation source through the simulation based on the Monte Carlo method. As a result, the distribution of organ dose was found to be higher as the position of the radiation source was closer to the handling position of a practitioner, and the effective dose distribution was different according to the ICRP tissue weight. Furthermore, the dose reduction effect according to the L-block thickness tended to decrease, which showed the exponential distribution, as the shielding thickness increased. The dose reduction effect according to each radiation source showed a low shielding effect in proportion to the emitted gamma ray energy level.

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Radiation Effects on Fiber Bragg Grating Sensors by Irradiation Conditions of UV Laser (UV 레이저 노출조건에 따른 FBG 센서의 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2310-2316
    • /
    • 2016
  • We studied the effect of $Co^{60}$ gamma-radiation on the fiber Bragg gratings (FBGs) by irradiation time of UV Krypton fluoride (KrF) excimer laser among grating processing parameters. The FBGs were fabricated in a different UV laser irradiation time at 30, 60, 90, and 120 seconds using the same commercial Ge-doped silica core fiber (SMF-28e). It was exposed to gamma-radiation up to a high dose of 34.3 kGy at the dose rate of 106 Gy/min, and then it was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift. According to the experimental results, We confirmed that the UV laser irradiation period for grating inscription has a highly effect on the radiation sensitivity of the FBGs. The radiation-induced Bragg wavelength shift by the change of laser irradiation conditions showed a difference more than about 50 %.

Establishment of micronuclus assay as biological dosimetry in pig lymphocytes after gamma-irradiation (돼지 림프구의 미소핵 형성을 지표로 방사선 생물학적 선량측정법 확립)

  • Kim, Se-ra;Lee, Hae-june;Lee, Jin-hee;Kang, Chang-mo;Kim, Tae-hwan;Jo, Sung-kee;Kim, Jong-choon;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.323-327
    • /
    • 2004
  • The purpose of the present experiment was to investigate the micronuclei(MN) frequency in cytokinesis-blocked(CB) cells after various doses of gamma-rays in pig (Landrace, male, 3-month-old) and so to contribute to the clarification of the question whether these species are suitable as a target organism in the test system. The frequencies of binucleated cells, and gamma-ray-induced MN in CB cells at several doses were measured in three donors. The peaks of binucleated lymphocyte formation(22%) were found at a concentration of 2% phytohaemagglutinin(PHA) and $4{\mu}g/ml$ Cytochalasin B(Cyt-B) in pig at 72 hours after incubation. Measurements performed after irradiation showed a dose-related increases in MN frequency in each of the donors studied. When analysed by linear-quadratic model the line of best fit was $y=0.0183D+0.0124D^2+0.0133$(y = number of MN/CB cells and D=irradiation dose in Gy). In conclusion, the results demonstrate that it appears feasible to use pig as target organisms in the micronucleus test to estimate the cytogenetic damage caused by ionizing radiations or, potentially, chemical compounds.

Radiation Hardness Characteristics of Fiber Bragg Gratings on the High Temperature Annealing Condition (고온 어닐링 조건에 따른 FBG 센서의 내방사선 특성)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1980-1986
    • /
    • 2016
  • In this study, we studied the gamma-radiation effect of fiber Bragg gratings (FBGs) on the high temperature annealing condition after grating inscription using a KrF UV laser (248 nm). The FBGs were fabricated in a different annealing temperature using the same commercial Ge-doped silica core fiber (SMF-28e) and exposed to gamma-radiation up to a dose of 31 kGy at the dose rate of 115 Gy/min. The high temperature annealing procedure for grating stabilization was applied to change the radiation sensitivity of the FBGs. According to the experimental data and analysis results, the gratings that were stabilized at different temperatures at 100, 150 and $200^{\circ}C$ have clearly shown that exposure to higher temperatures increases their radiation sensitivity. The radiation-induced Bragg wavelength shift (BWS) was shown a difference of up to about a factor of two depending on the annealing temperature conditions of the gratings.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Decomposition of 2,4,6-Trinitrotoluene (TNT) by Gamma Ray Irradiation (감마선 조사에 의한 2,4,6-Trinitrotoluene (TNT)의 분해)

  • Lee, Byung-Jin;Lee, Myun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose of this study was to evaluate the potential of a gamma irradiation to decompose 2,4,6-trinitrotoluene(TNT) in an aqueous solution. The decomposition reaction of TNT by gamma irradiation was a pseudo first-order kinetic over the applied initial concentrations($25{\sim}100mg/L$). The dose constant was strongly dependent on the initial TNT concentration. The removal of TNT was more efficient at pH below 3 and at pH above 11 than at neutral pH(pH 5-9). The required irradiation dose to remove over 99% of TNT was 40, 80 and 10 kGy, individually at pH 2, 7 and 13. The dose constant was increased by 1.6 fold and over 15.6 fold at pH 2 and 13, respectively, when compared with that at pH 7 When irradiation dose of 200 kGy was applied, the removal efficiencies of TOC were 91, 46 and 53% at pH 2, 7 and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of TNT and glyoxalic acid and oxalic acid were detected as organic byproducts. The results showed that a gamma irradiation was an attractive method for the decomposition of TNT in an aqueous solution. However, regarding the application of high energy radiation for the TNT decomposition and mineralization, an application of an acidic pH below 3 to the solution before irradiation should be considered.