• 제목/요약/키워드: galaxies: optical and infrared

검색결과 92건 처리시간 0.027초

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z=0.087

  • 고종완;임명신
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We present a multi-wavelength study of a supercluster in the NEP region at z=0.087, using AKARI (Infrared space telescope) NEP-Wide (5.8 deg2) survey which has obtained an unique IR imaging dataset with contiguous wavelength coverage from 2 to $24{\mu}m$, overcoming the Spitzer limitation of imaging capability at $10-20{\mu}m$. The NEP-Wide survey is also covered in other wavelength such as X-ray, Radio, GALEX UV in the archive, optical (BRI from Maidanak 1.5m and CFHT's MegaPrime), and NIR imaging data (JH from KPNO 2.1m), with nearly 1900 optical spectra, mostly obtained by our group using MMT/Hectospec and WIYN/Hydra. Armed with the multiwavelength datasets, we investigate the connection between IR properties of galaxies and their environments as a tool to understand the evolution of galaxies in a supercluster environment. Specific attention will be given to MIR emission which can trace star formation activities and passive phases right after post-starbursts, and its relation to other wavelength data.

  • PDF

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구 (A Multi-Wavelength Study of Galaxy Transition in Different Environments)

  • 이광호
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Detection of a Large Amount of Diffuse Extraplanar Dust in NGC 891

  • 선광일
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.71.1-71.1
    • /
    • 2011
  • Significant discrepancies have been found between the dust masses of edge-on spiral galaxies derived from various tracers (optical/near-infrared, far-infrared/sub-millimeter observations, and the variation of dust attenuation with viewing angle). Here we report the first detection of a vertically extended far-ultraviolet (FUV) and near-UV (NUV) emission in an edge-on spiral galaxy NGC 891. The vertically extended emission is interpreted as the dust-scattered light due to a extraplanar dust layer in NGC 891 that contains about the same mass as the standard thin dust disk. This new dust component completely encloses the stellar disk and bulge, and solves the puzzle of dust mass.

  • PDF

High redshift clusters in ELAIS N1 fields

  • 현민희;임명신;김재우
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.38.2-38.2
    • /
    • 2013
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models and study the evolution and formation of galaxies and their large scale distribution. We report results from our study of galaxy clusters in the European Large Area ISO Survey North1(ELAIS-N1) field, covering a sky area of 8.75 $deg^2$. We combine multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS, JK bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE, Optical-Infrared bands), and CFHT (z band). The photometric redshifts are derived from these datasets and are used to search for high redshift galaxy cluster candidates. Finally, we provide new candidates of galaxy clusters at redshifts 1.0

  • PDF

High redshift clusters in ELAIS N1/N2 fields

  • 현민희;임명신;김재우
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.90.1-90.1
    • /
    • 2012
  • Galaxy clusters, the largest gravitationally bound system, are important means to place constraints on cosmological model and to study the evolution and the formation of galaxies and their large scale distribution. We will report results from our study of galaxy clusters in the European Large Area ISO Survey North1/North2(ELAIS-N1/N2) fields, covering a total of 10.8 $deg^2$. We combine multiple wavelength data from IMS survey, UKIRT Infrared Deep Survey-Deep Extragalactic Survey (UKIDSS-DXS, JK bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE, Optical-Infrared bands), and CFHT (u,g,r,i,z bands.) The photometric redshifts are derived from these datasets and are used to search for high redshift galaxy clusters at 0.8 < z < 1.5.

  • PDF

NEP-WIDE POINT SOURCE CATALOG

  • Kim, Seong Jin;Lee, Hyung Mok;NEP-Wide Team, NEP-Wide Team
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.147-148
    • /
    • 2012
  • We present a photometric catalog of infrared (IR) sources based on the North Ecliptic Pole Wide field (NEP-Wide) survey of AKARI, which covered a 5.4 $deg^2$ circular area centered on NEP. The catalog contains about 115,000 sources detected at the 9 IRC filter bands, comprehensively covering a wavelength range from 2 to $24{\mu}m$. This is a band-merged catalog including all of the photometry results from the supplementary optical data as well as the IRC bands. To validate a source at a given IRC band, we searched for counterparts in the other bands. The band-merging was done based on this cross-matching of the sources among the filter bands. The NIR sources without any counterpart in any other bands are finally excluded to avoid false objects.

Multi-wavelength Extragalactic Studies in the AKARI Deep Field - South

  • Jeong, Woong-Seob;Kim, Minjin;Ko, Jongwan;Park, Sung-Joon;Ko, Kyeongyeon;Jo, Youngsoo;Lee, Min Gyu;Seo, Hyun Jong;Kim, Taehyun;Pyo, Jeonghyun;Lee, Dongseob;Kim, Il-Joong
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.31.4-32
    • /
    • 2018
  • The ADF-S (AKARI Deep Field - South) toward South Ecliptic Pole is one of the deep survey fields designed for the study of Cosmic Infrared Background (CIB). Owing to the easy accessibility with space missions and its low background brightness, the deep extragalactic survey was initiated by AKARI deep far-infrared observations and it will be performed by other future missions (e.g., Euclid, NISS, SPHEREx). The recent optical survey with KMTNet enabled us to identify the optical counterparts for dusty star-forming galaxies such as ULIRG, DOG, SMG. In addition, the NISS will perform the valuable spectro-photometric survey in the ADF-S. Those multi-wavelength data sets helps to trace the major galaxy population contributing to the CIB. Here, we introduce the extragalactic survey with the NISS and report the current status of the multi-wavelength extragalactic studies in the ADF-S.

  • PDF

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

AKARI SPECTROSCOPY OF QUASARS AT 2.5 - 5 MICRON

  • Im, Myungshin;Jun, Hyunsung;Kim, Dohyeong;Lee, Hyung Mok;Ohyama, Youichi;Kim, Ji Hoon;Nakagawa, Takao;QSONG Team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.163-167
    • /
    • 2017
  • Utilizing a unique capability of AKARI that allows deep spectroscopy at $2.5-5.0{\mu}m$, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3.3 < z < 6.42) quasars and 90 low redshift active galactic nuclei (0.002 < z < 0.48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the $H{\alpha}$ line and the rest-frame optical spectra of quasars at z > 3.3. The low redshift part of QSONG is geared to uncover the rest-frame $2.5-5.0{\mu}m$ spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the $H{\alpha}$ line from a quasar at z > 4.5 which indicates a rigorous growth of black holes in the early universe, and the $Br{\beta}$-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.