• Title/Summary/Keyword: galaxies: active

Search Result 200, Processing Time 0.023 seconds

SIMULTANEOUS OBSERVATIONS OF H2O AND SIO MASERS TOWARD KNOWN EXTRAGALACTIC WATER MASER SOURCES

  • CHO, SE-HYUNG;YOON, DONG-HWAN;KIM, JAEHEON;BYUN, DO-YOUNG;WAGNER, JAN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.357-364
    • /
    • 2015
  • We observe ten known 22GHz H2O maser galaxies during February 19-22, 2011 using the 21 m Tamna telescope of the Korean VLBI Network and a new wide-band digital spectrometer. Simultaneously we searched for 43GHz SiO v = 1, 2, J = 1-0 maser emission. We detect H2O maser emission towards five sources (M 33, NGC 1052, NGC 1068, NGC 4258, M 82), with non-detections towards the remaining sources (UGC 3193, UGC 3789, Antennae H2O-West, M 51, NGC 6323) likely due to sensitivity. Our 22GHz spectra are consistent with earlier findings. Our simultaneous 43GHz SiO maser search produced non-detections, yielding - for the first time - upper limits on the 43GHz SiO maser emission in these sources at a 3 σ sensitivity level of 0.018K-0.033K (0.24 Jy-0.44 Jy) in a 1.75 km s−1 velocity resolution. Our findings suggest that any 43GHz SiO masers in these sources (some having starburst-associated H2O kilomasers) must be faint compared to the 22GHz H2O maser emission.

AKARI OBSERVATIONS OF DUSTY TORI OF ACTIVE GALACTIC NUCLEI

  • Oyabu, Shinki;Kaneda, Hidehiro;Izuhara, Masaya;Tomita, Keisuke;Ishihara, Daisuke;Kawara, Kimiaki;Matsuoka, Yoshiki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.157-161
    • /
    • 2017
  • The dusty torus of Active Galactic Nuclei (AGNs) is one of the important components for the unification theory of AGNs. The geometry and properties of the dusty torus are key factors in understanding the nature of AGNs as well as the formation and evolution of AGNs. However, they are still under discussion. Infrared observation is useful for understanding the dusty torus as thermal emission from hot dust with the dust sublimation temperature (~ 1500 K) has been observed in the infrared. We have analyzed infrared spectroscopic data of low-redshift and high-redshift quasars, which are luminous AGNs. For the low-redshift quasars, we constructed the spectral energy distributions (SEDs) with AKARI near-infrared and Spitzer mid-infrared spectra and decomposed the SEDs into a power-law component from the nuclei, silicate features, and blackbody components with different temperatures from the dusty torus. From the decomposition, the temperature of the innermost dusty torus shows the range between 900-2000 K. For the high-redshift quasars, AKARI traced rest-frame optical and near-infrared spectra of AGNs. Combining with WISE data, we have found that the temperature of the innermost dusty torus in high redshift quasars is lower than that in typical quasars. The hydrogen $H{\alpha}$ emission line from the braod emission line region in the quasars also shows narrow full width at half maximum of $3000-4000km\;s^{-1}$. These results indicate that the dusty torus and the broad emission line region are more extended than those of typical quasars.

PAGAN I: MULTI-FREQUENCY POLARIMETRY OF AGN JETS WITH KVN

  • KIM, JAE-YOUNG;TRIPPE, SASCHA;SOHN, BONG WON;OH, JUNGHWAN;PARK, JONG-HO;LEE, SANG-SUNG;LEE, TAESEOK;KIM, DAEWON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.285-298
    • /
    • 2015
  • Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to > 108.01 K and > 109.86 K, respectively. Degrees of linear polarization mL are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL ~ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.

Black Hole Activities of Red Active Galactic Nuclei

  • Kim, Dohyeong;Im, Myungshin;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2015
  • We investigate black hole (BH) activities of 16 red active galactic nuclei (AGNs). The 16 red AGNs selected by red colors in optical through near-infrared (NIR) and radio detection. In order to derive BH activities of the red AGNs, we use $P{\beta}$ line with NIR spectra obtained by the SpeX on the IRTF. The $P{\beta}$ line suffers from dust extinction less than UV/optical BH mass estimators. We compared Eddington ratios of the red AGNs and "normal" AGNs, and the Eddington ratios of red AGNs are significantly higher than those of "normal" AGNs. The result is consistent with a scenario that red AGNs are the intermediate population between star forming galaxies and "normal" AGNs, and BHs of red AGNs are very active and grow rapidly in such a stage.

  • PDF

MULTIPLE EMISSION STATES IN ACTIVE GALACTIC NUCLEI

  • Park, Jong-Ho;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.6
    • /
    • pp.147-156
    • /
    • 2012
  • We present a test of the emission statistics of active galactic nuclei (AGN), probing the connection between the red-noise temporal power spectra and multi-modal flux distributions known from observations. We simulate AGN lightcurves under the assumption of uniform stochastic emission processes for different power-law indices of their respective power spectra. For sufficiently shallow slopes (power-law indices (${\beta}{\leq}1$), the flux distributions (histograms) of the resulting lightcurves are approximately Gaussian. For indices corresponding to steeper slopes (${\beta}{\geq}1$), the flux distributions become multi-modal. This finding disagrees systematically with results of recent mm/radio observations. Accordingly, we conclude that the emission from AGN does not necessarily originate from uniform stochastic processes even if their power spectra suggest otherwise. Possible mechanisms include transitions between different activity states and/or the presence of multiple, spatially disconnected, emission regions.

Interferometric Monitoring of Gamma-Ray Bright AGNs: 4C +28.07 and Its Synchrotron Self-Absorption Spectrum

  • Myoung-Seok Nam;Sang-Sung Lee;Whee Yeon Cheong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.231-252
    • /
    • 2023
  • We present the analysis results of the simultaneous multifrequency observations of the blazar 4C +28.07. The observations were conducted by the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program, which is a key science program of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN). Observations of the iMOGABA program for 4C +28.07 were conducted from 16 January 2013 (MJD 56308) to 13 March 2020 (MJD 58921). We also used γ-ray data from the Fermi Large Array Telescope (Fermi-LAT) Light Curve Repository, covering the energy range from 100 MeV to 100 GeV. We divided the iMOGABA data and the Fermi-LAT data into five periods from 0 to 4, according to the prosody of the 22 GHz data and the presence or absence of the data. In order to investigate the characteristics of each period, the light curves were plotted and compared. However, a peak that formed a hill was observed earlier than the period of a strong γ-ray flare at 43-86 GHz in period 3 (MJD 57400-58100). Therefore, we assumed that the minimum total CLEANed flux density for each frequency was quiescent flux (Sq) in which the core of 4C +28.07 emitted the minimum, with the variable flux (Svar) obtained by subtracting Sq from the values of the total CLEANed flux density. We then compared the variability of the spectral indices (α) between adjacent frequencies through a spectral analysis. Most notably, α22-43 showed optically thick spectra in the absence of a strong γ-ray flare, and when the flare appeared, α22-43 became optically thinner. In order to find out the characteristics of the magnetic field in the variable region, the magnetic field strength in the synchrotron self-absorption (BSSA) and the equipartition magnetic field strength (Beq) were obtained. We found that BSSA is largely consistent with Beq within the uncertainty, implying that the SSA region in the source is not significantly deviated from the equipartition condition in the γ-ray quiescent periods.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

NEW EQUATIONS FOR THE ENTROPY INCREASE AND THE ANGULAR MOMENTUM-ENERGY EQUATION OF A BLACK HOLE (새로운 블랙흘 엔트로피 증가, 각운동량-에너지 추출 방정식)

  • Park, Seok-Jae
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.11-14
    • /
    • 2003
  • In the earlier papers we analyzed the axisymmetric, nonstationary electrodynamics of the central black hole and a surrounding thin accretion disk in an active galactic nucleus. Based on those papers we analyze the axisymmetric, nonstationary force-free black hole magnetosphere and the motion of the plasma. We concentrate on deriving the totally new equations for the entropy incrrease and the angular momentum, energy extraction of the black hole.

THE NONSTATIONARY 'GRAD-SHAFRANOV EQUATIONS' IN THE BLACK HOLE MAGNETOSPHERES (시간에 따라 변하는 블랙흘 자기권의 'GRAD-SHAFRANOV 방정식')

  • Park, Seok-Jae;Lee, Tae-Hyeong
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • In the earlier papers we analyzed the axisymmetric, nonstationary electrodynamics of the central black hole and a surrounding thin accretion disk in an active galactic nucleus. Based on those papers we analyze the axisymmetric, nonstationary black hole magnetosphere in this paper. We concentrate on deriving the ‘Grad-Shafranov equations’; both in the force-free and non-force-free cases. In the time-independent limit our equations naturally coincide with stationary equations as they should.

PLASMA VELOCITIES IN THE NONSTATIONARY BLACK HOLE MAGNETOSPHERE (시간에 따라 변하는 블랙홀 자기권의 플라즈마 속도)

  • PARK SEOK JAE
    • Publications of The Korean Astronomical Society
    • /
    • v.17 no.1
    • /
    • pp.7-10
    • /
    • 2002
  • In the earlier papers we analyzed the axisymmetric, nonstationary electrodynamics of the central black hole and a surrounding thin accretion disk in an active galactic nucleus. Based on those papers we analyze the axisymmetric, nonstationary force-free black hole magnetosphere and the motion of the plasma. We concentrate on deriving the relations between the velocity components of the plasma and those of the accreting magnetic field lines. We conclude that the former are given by the sum of the latter and the magnetic field terms.