• Title/Summary/Keyword: gal promoter

Search Result 98, Processing Time 0.03 seconds

재조합 Saccharomyces cerevisiae에서 Inulinase와 Invertase의 발현과 분비에 미치는 배양조건의 영향

  • 남수완;신동하;김연희
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.258-265
    • /
    • 1997
  • The effects of medium pH and culture temperature on the expression and secretion of inulinase and invertase were investigated with recombinant Saccharomyces cerevisiae cells. These cells were obtained by transformation of 2$\mu$-based plasmids pYI10 and pYS10 which contain Kluyveromyces marxianus inulinase gene (INU1A) and S. cerevisiae invertase gene (SUC2), respectively, in the downstream of GAL1 promoter. The expression level and localization of inulinase and invertase were not affected significantly by the initial medium pH: secretion efficiencies of inulinase and invertase into the medium were about 90% and 60%, respectively, in the pH ranges of 4.0 to 6.5. However, the expression and secretion of both enzymes were strongly dependent on the culture temperature. The highest expression (7.7 units/mL) and secretion (6.7 units/mL) of inulinase were observed at 28$\circ$C and 30$\circ$C. As a consequence of decreased localization of inulinase in the periplasmic space, the secretion efficiency increased from 68% at 20$\circ$C, to 95% at 35$\circ$C,. The total expression level and secretion efficiency of invertase increased from 19 units/mL and 55% at 20$\circ$C to 25 units/mL and 68% at 35$\circ$C, respectively. Irrespective of the culture temperature, the invertase activity in the cellular fraction (periplasmic space and cytoplasmic fractions) was kept constant at around 33-45%.

  • PDF

Effect of Galactose and Dextrose on Human Lipocortin I Expression in Recombinant Saccharomyces cerevisiae Carrying Galactose-Regulated Expression System

  • Nam, Soo-Wan;Seo, Dong-Jin;Rhee, Sang-Ki;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.168-173
    • /
    • 1993
  • The expression kinetics of human lipocortin I (LCI), a potential anti-inflammatory agent, was studied in the shake-flask and fermenter cultures of Saccharomyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LCI, and the plasmid stability were investigted under various galactose induction conditions. The expression of LCI was repressed by the presence of a very small amount of dextrose in the culture medium, but it was induced by galactose after dextrose became completely depleted. The optimal ratio of dextrose to galactose for lipocortin I production was found to be 1.0 (10 g/l dextrose and 10 g/l galactose). With optimal D/G ratio of 1.0 and the addition of galactose prior to dextrose depletion, LCI of about 100~130 mg/l was produced. LCI at a concentration of 174 mg/l was porduced in the fed-batch culture, which was nearly a twice as much of that produced in the batch culture. The plasmid stability was very high in all culture cases, and thus was considered to be not an important parameter in the expression of LCI.

  • PDF

Functional Equivalence of Translation Factor elF5B from Candida albicans and Saccharomyces cerevisiae

  • Jun, Kyung Ok;Yang, Eun Ji;Lee, Byeong Jeong;Park, Jeong Ro;Lee, Joon H.;Choi, Sang Ki
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.172-177
    • /
    • 2008
  • Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the $fun12{\Delta}$ strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the $fun12{\Delta}$ strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

Expression of c-myc Proto-oncogene in Preimplantation Mouse Embryos (착상전 생쥐배아에서 c-myc 유전자의 발현)

  • 정성진;강해묵강성구김경진
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • The c-myc proto-oncogene, one of the immediately earlY genes, is expressed in various mammalian cell types and heavily involved in the regulation of cell proliferation and differentiation. To determine endogeneous expression pattern of c-myc gene in preimpBantation mouse embwos, we employed a reverse transcription coupled to polvrnerase chain reaction (RT-PCR). Transcript of c-myc was detected at fertilized embryos as a maternal transcript. At the early two-cell stave, transcript of c-myc gene was hardly detected, bu, appeared at late two-cell embryos as a zygotic transcript. The level of c-myc expresion was increased at later stases and peaked at blastocvst stage. To examine the functional role of promoter region for c-myc gene transcription, we fused the 5'upstream region (1.8 kb) including econ 1 of c-myc genomic DNA with E. coli lacE gene fnamed as pcMYC-laczl. pcMYC-lacZ was microiniected into the pronscleus of mouse one-cell embryovs, and p·salactosidase activity was determined tv histochemical staining with X-gal at different stases. f-galactosidase activity was detected only at blastocyst, but not at the earlier stage embryos. This result indicates that c-myc gene is transcriptionallv active during mouse preimplantation development.

  • PDF

End Point Temperature of Rewarming and Afterdrop After Hypothermic Cardiopulmonary Bypass in Pediatric Patients (소아에서의 저체온 심폐바이패스후 재가온 종료온도와 후하강)

  • Kim, Won-Gon;Lee, Hae-Won;Lim, Cheong
    • Journal of Chest Surgery
    • /
    • v.30 no.2
    • /
    • pp.125-130
    • /
    • 1997
  • Separating the patient from hypothermic cardiopulmonary bypass(CPB) before achieving adequate rewarming often results in afterdrop, which can predispose to electrolyte disturbances, arrhythmia, hemodynamic alterations, and shivering-induced increase of oxygen consumption. In an attempt to find an adequate end point temperature of rewarming after hypothermic CPB, 50 pediatric cardiac surgical patients were r ndomly assigned for end point temperature of rewarming of 35.5$^{\circ}C$ (Group 1) or 37t (Group 2), rectal temperature. Thereafter the rectal temperature was measured half, one, four, eight, and 16 hour after arrival to the intensive care unit(ICU), with heart rate and blood pressure. Additionally the rectal temperature was compared with esophageal temperature during CPB, and axillary temperature luring stay in the ICU. Nonpulsatile perfusion with a roller pump was used in all patients and a membrane or bubble oxygenator was used for oxygenation. Both groups were comparable with respect to age, sex, body surface area, total bypass time, and rewarming time. There was no afterdrop in both groups, and there were no statistical differences in the rectal temperatures between two groups. There were also no statistical dilyerences with respect to the heart rate and blood pressure between two groups. At the end of rewarming the esophageal temperature was higher than the rectal temperature. The axil ary temperature measured in ICU was always lower than the rectal temperature. No shivering was noted in all patients. In conclusion, with restoration of rectal temperature above 35.5$^{\circ}C$ at the end of CPB in pediatric patients, we did not observe an afterdrop.

  • PDF

Antihyperlipidemic Effect of Ginsenoside Rg1 in Type 2 Diabetic Mice (제2형 당뇨병 모델 마우스에서 ginsenoside Rg1의 항당뇨 효과)

  • Park, Jae-Hong;Lee, Ji-Youn;Yeo, Ji-Young;Nam, Jeong-Su;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.932-938
    • /
    • 2011
  • Ginsenoside Rg1 is a pharmacologically active component isolated from ginseng. The goal of this study was to clarify the beneficial effects of Rg1 on glucose and lipid metabolism in diabetic animals (db/db mice). To accomplish this, ten week old db/db mice were administered 10 mg/kg of Rg1 for 15 days. Rg1 did not influence the weight of db/db mice when compared with vehicle-treated db/db mice. The administration of Rg1 lowered fasting plasma glucose, and improved glucose tolerance. Importantly, Rg1 markedly reduced both plasma triglyceride and free fatty acids, and increased high-density lipoprotein cholesterol (HDL-C) concentrations in db/db mice. Rg1 activated promoter activity of chimeric GAL4-PPAR${\alpha}$ reporter and increased expression of peroxisome proliferator-activated receptor alpha (PPAR${\alpha}$) target genes such as carnitine palmitoyltransferase-1 (CPT-1) and acyl-CoA oxidase (ACO), which are involved in fatty acid oxidation. These findings indicated that improvement of lipid profiles by Rg1 may be associated with increased fatty acid oxidation via PPAR${\alpha}$ activation. Taken together, these results suggest that Rg1 could have beneficial effects for controlling hyperglycemia and hyperlipidemia associated with type 2 diabetes.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Surface Display of Bacillus CGTase on the Cell of Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Bacillus CGTase의 표층발현)

  • Kim Hyun-Chul;Lim Chae-Kwon;Kim Byung-Woo;Jeon Sung-Jong;Nam Soo-Wan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.118-123
    • /
    • 2005
  • For the expression in Saccharomyces cerevisiae, Bacillus stearothermophilus cyclodextrin glucano­transferase gene (cgtS) in pCGTS (4.8 kb) was subcloned into the surface expression vector, pYD1 (GALl promoter). The constructed plasmid, pYDCGT (7.2 kb) was introduced into S. cerevisiae EBY100 cells, and then yeast transformants were selected on the synthetic defined media lacking tryptophan. The formation of cyclodextrin (CD) was confirmed with active staining of culture broth of transformant grown on starch medium. Enzymatic reaction products with respect to the culture time and the reaction time were examined by TLC analysis. The results indicated that the enzyme activity was exhibited after 12 h cultivation and CD was produced after 10min of enzymatic reaction. When the surface-engineered yeast cells were cultured on galactose medium, maximum activities of CGTase were about 21.3 unit/l and 16.5 unit/l at $25^{\circ}C\;and\;30^{\circ}C$, respectively. The plasmids stability showed about $80\%\;even\;at\;25^{\circ}C\;and\;30^{\circ}C$.

Production and Prophylactic Efficacy Study of Human Papillomavirus-like Particle Expressing HPV16 L1 Capsid Protein

  • Park, Jie-Yun;Pyo, Hyun-Mi;Yoon, Sun-Woo;Baek, Sun-Young;Park, Sue-nie;Kim, Chul-Joong;Haryoung Poo
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • To perform the prophylactic study of a vaccine derived from human papillomavirus (HPV) using Balb/c mice, we produced virus like particles consisting of HPV capsid protein L1 which has been reported to induce significant humoral and cellular immunity using various animal model systems. In order to produce HPV16 VLPs, the cDNA of L1 capsid protein in HPV type 16, obtained by polymerase chain reaction, was inserted into yeast expression vector, YEG$\alpha$-HIR525 under the control of GAL10 promoter. The transformation of YEG$\alpha$-HPV16 L1 was performed into the yeast Saccharomyces cerevisiae Y2805 by the lithium acetate method and the yeast clone expressing the highest level of L1 capsid protein of human papillomavirus type 16 was selected by Western blot analysis using anti-HPV16 L1 antibody. The purification of HPV16 VLP has been performed by the ultracentrifugation and gel-filtration methods. To validate the vaccine efficacy of the purified HPV16 VLPs and investigate the properties of HPV16 VLPs to induce humoral immunity, ELISA assay was performed. A significantly increased production of anti-HPV16 VLP antibodies was observed in sera from immunized mice. The neutralization activity of antibodies in the sera from the vaccinated mice was demonstrated by a rapid and simple assay to detect hemagglutihation inhibition activity.

Overexpression of Thermoalkalophilic Lipase from Bacillus stearothermophilus L1 in Saccharomyces cerevisiae

  • Ahn, Jung-Oh;Jang, Hyung-Wook;Lee, Hong-Weon;Choi, Eui-Sung;Haam, Seung-Joo;Oh, Tae-Kwang;Jung, Joon-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.451-456
    • /
    • 2003
  • An expression vector system was developed for the secretory production of recombinant Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae. The mature L1 lipase gene was fused to ${\alpha}-amylase$ signal sequence from Aspergillus oryzae for the effective secretion into the culture broth and the expression was controlled under GAL10 (the gene coding UDP-galactose epimerase of S. cerevisiae) promoter. S. cerevisiae harboring the resulting plasmid successfully secreted L1 lipase into the culture broth. To examine an optimum condition for L1 lipase expression in the fed-batch culture, L1 lipase expression was induced at three different growth phases (early, mid, and late-exponential growth phases). Maximum product on of L1 lipase (1,254,000 U/l, corresponding to 0.65/1) was found when the culture was induced at an early growth phase. Secreted recombinant L1 lipase was purified only through CM-Sepharose chromatography, and the purified enzyme showed 1,963 U/mg of specific activity and thermoalkalophilic properties similar to those reported for the enzyme expressed in Escherichia coli.