DOI QR코드

DOI QR Code

Surface Display of Bacillus CGTase on the Cell of Saccharomyces cerevisiae

Saccharomyces cerevisiae에서 Bacillus CGTase의 표층발현

  • Kim Hyun-Chul (Department of Biomaterial Control, Dong-Eui University) ;
  • Lim Chae-Kwon (Department of Biotechology & Bioengineering, Dong-Eui University) ;
  • Kim Byung-Woo (Department of Microbiology, Dong-Eui University) ;
  • Jeon Sung-Jong (Department of Biotechology & Bioengineering, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biotechology & Bioengineering, Dong-Eui University)
  • 김현철 (동의대학교 바이오물질제어학과) ;
  • 임채권 (동의대학교 생명공학과) ;
  • 김병우 (동의대학교 미생물학과) ;
  • 전숭종 (동의대학교 생명공학과) ;
  • 남수완 (동의대학교 생명공학과)
  • Published : 2005.02.01

Abstract

For the expression in Saccharomyces cerevisiae, Bacillus stearothermophilus cyclodextrin glucano­transferase gene (cgtS) in pCGTS (4.8 kb) was subcloned into the surface expression vector, pYD1 (GALl promoter). The constructed plasmid, pYDCGT (7.2 kb) was introduced into S. cerevisiae EBY100 cells, and then yeast transformants were selected on the synthetic defined media lacking tryptophan. The formation of cyclodextrin (CD) was confirmed with active staining of culture broth of transformant grown on starch medium. Enzymatic reaction products with respect to the culture time and the reaction time were examined by TLC analysis. The results indicated that the enzyme activity was exhibited after 12 h cultivation and CD was produced after 10min of enzymatic reaction. When the surface-engineered yeast cells were cultured on galactose medium, maximum activities of CGTase were about 21.3 unit/l and 16.5 unit/l at $25^{\circ}C\;and\;30^{\circ}C$, respectively. The plasmids stability showed about $80\%\;even\;at\;25^{\circ}C\;and\;30^{\circ}C$.

B. stearothermophilus 유래의 CGTase 유전자(cgtS)를 보유하고 있는 재조합 plasmid pCGTS (4.8 kb)을 효모 표면 발현용 vector인 pYDl (GAL1 promoter)에 subcloning 하였다. 구축된 재조합 plasmid, pYDCGT (7.2 kb)는 S. cerevisiae EBY100에 형질전환하였고, tryptophan이 결여된 SD 배지에서 1차 선별된 형질전환체들을 YPGS배지에서 배양 후 활성 염색을 통하여 CD가 생 성 됨을 확인하였다. 배양시간과 효소반응시간에 따른 반응 산물을 TLC로 분석 한 결과, 배양 12시간째부터 효소활성이 나타났고, 반응 10분 이후부터 CD가 생성되어 시간이 지남에 따라 CD 생성양이 증가하는 것을 확인하였다. 회분 배양한 결과 $25^{\circ}C$$30^{\circ}C$에서 CGTase의 최대 활성이 각각 21.3 unit/1 와 16.5 unit/1로 나타났고, plasmid 안정성은 각각 $86\%$$82\%$로 나타나 배양온도에 상관없이 plasmid는 비교적 안정하게 유지되었다.

Keywords

References

  1. Bender, M. I. and M. Komiyama. 1978. Cyclodextrin Chemistry. 3th eds., Springer Verlag, New York
  2. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnol. 15, 553-557 https://doi.org/10.1038/nbt0697-553
  3. Boder, E. T. and K. D. Wittrup. 2000. Yeast surface display for directed evolution of protein expression, affinity, and stability, pp. 430-444, In J. Thorner, S. D. Emr and J. N Abelson (eds.), Methods in Enzymology. Vol. 328, Academic Press Inc., New York
  4. Coppellaro, C., C. Baldermann, R. Rache, and W. Tanner. 1994. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: Cell wall attachment and active site of a-and ${\alpha}$-agglutinin. EMBO J. 13, 4737-4744
  5. Fujiwara, S., H. Kakihara, B. W. Kim, A. Leujeune, M. Kanemoto, K. Sakaguchi, and T. Imanaka. 1992. Cyclization chracteristics of cyclodextrin glucanotransferase are conferred by the $NH_2$-terminal region of the enzyme. Appl. Environ. Microbiol. 58, 4016-4025
  6. Georgiou, G., H. L. Poetschke, C. Stathopoulos, and J. A. Francisco. 1993. Practical applications of engineering Gramnegative bacterial cell surfaces. Trends Biotechnol. 11, 6-10 https://doi.org/10.1016/0167-7799(93)90068-K
  7. Ito, H., Y. Fukuda, K. Murata, and A Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168
  8. Kim, K. Y., M. D. Kim, N. S. Han and J. H. Seo. 2002. Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cereoisiae. J. Microbiol. Biotechnol. 12, 411-416
  9. Lipke, P. N and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56, 180-194
  10. Little, M., P. Fuchs, F. Breitling and S. Dubel. 1993. Bacterial surface presentation of proteins and peptides: and alternative to phage technology. Trends Biotechnol. 11, 3-5 https://doi.org/10.1016/0167-7799(93)90067-J
  11. Romanos, M. A, C. A Scorer and J. J. Clare. 1992. Foreign gene expression in yeast: a review. Yeast 8, 423-488 https://doi.org/10.1002/yea.320080602
  12. Schreuder, M. P., A T. Mooren, H. Y. Toschka, C. T. Verrips and F. M. Klis. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14, 115-120 https://doi.org/10.1016/0167-7799(96)10017-2
  13. Szejtli, J. 1988. Cyclodextrin Technology. pp. 1-78. Kluwer Academic Publshers, Dordrecht
  14. Szejtli, J. 1990. The Cyclodextrins and their applications in biotechnology. Carbohydr. Polym. 12, 37S-392
  15. Valentin, E., E. Herrero, J. F. I. Pastor and R. Sentandreu. 1984. Solubilization and analysis of mannoprotein molecules from the cell wall of Saccharomyces cereoisiae. Arch. Microbiol. 130, 1419-1428 https://doi.org/10.1099/00221287-130-6-1419
  16. Van der Vaart, J. M., L. H. P. Caro, J. W. Chapman, F. M. Klis, and C. T Verrips. 1995. Identification of three mannoproteins in the cell wall of Saccharomyces cereoisiae. J. Bacteriol. 177, 3104-3110
  17. Washida M., S. Takahachi, M. Veda and A. Tanaka. 2001. Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56, 681-686 https://doi.org/10.1007/s002530100718
  18. You, D. J., H. Y. Park, S. J. Jeon, H. J. Kwon, S. W. Nam and B. W. Kim. 2002. Expression of the Bacillus stearothermophilus NO2 CGTase gene in Saccharomyces cereoisiae. Kor. J. Microbiol. Biotechnol. 30, 206-209