• 제목/요약/키워드: gadolinium

검색결과 328건 처리시간 0.031초

양성자 빔 암치료효과 개선을 위한 산화철 및 산화가돌리늄 나노입자 기반의 방사선증감제 합성 (A Synthesis of Iron Oxide Based and Gadolinium Oxide Based Radiosensitizer for the Therapeutic Enhancement of Proton Beam Cancer)

  • 강보선
    • 한국방사선학회논문지
    • /
    • 제8권6호
    • /
    • pp.325-332
    • /
    • 2014
  • 금속나노입자는 진단이나 치료를 포함한 의생명응용분야에 있어 매력적인 특징들을 갖고 있다. 양성자 빔 치료를 위한 방사선증감제로 사용하기 위해 가교덱스트란이 코팅된 산화철나노입자(SPIONs)와 실리카가 코팅된 산화가돌리늄나노입자(SPGONs)를 합성하였다. 덱스트란과 실리카는 각각 SPIONs와 SPGONs의 보호수단이다. 합성된 SPIONs와 SPGONs를 투과전자현미경(TEM)으로 분석한 결과 각각 평균 직경이 3~5 nm와 30~100 nm였다. 합성된 방사선 증감제의 효과를 평가하기 위해 세포생존곡선 측정과 Western blotting을 수행하였다. 측정된 세포생존곡선으로부터 계산된 90% 세포사멸 시 방사선증감비는 SPIONs와 SPGONs에 대하여 각각 1.23과 1.03이었다. Western blotting 결과 역시 Cytochrome C의 발현량이 SPIONs를 처리한 암세포에서 유의적으로 증가됨을 보였다.

조합화학을 이용한 (Gd0.74Y0.11Tb0.15P1.15)Oδ 형광체 합성 및 발광특성 (Synthesis of (Gd0.74Y0.11Tb0.15P1.15)OδPhosphors Using Combinatorial Chemistry)

  • 이재문;유정곤;박덕현;김지식;손기선
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.381-387
    • /
    • 2004
  • 현재 상용화되어 있는 PDP용 형광체의 물성에 있어서 청색 형광체는 열화, 색도변화, 휘도, 그리고 녹색 형광체는 잔광시간과 색순도, 적색 형광체의 경우에는 색순도에 대한 개선이 필요한 것으로 알려져 있다. 그 중 녹색 형광체로 Willemite 구조의 ZnSiO:Mn 형광체의 경우 발광효율은 우수하나 반면에 잔광시간이 길고 색순도(color purity)가 좋지 않다는 단점을 가지고 있다. 따라서 본 연구에서는 미세조정 조합화학기법을 이용하여 PDP에 적합한 새로운 고효율 형광체를 개발하였다. 화학적으로 정량인 가돌리늄 인산염(gadolinium phosphorous) 대신 인산을 과잉으로 첨가하여 탐색한 다음 과잉인산(excess phosphorous) 첨가 조성을 유지한 채로 가돌리늄(gadolinium)의 일정분율을 이트륨(yttrium)으로 치환하였다. 그 결과 최적 형광체 조성은 (G $d_{0.74}$ $Y_{0.11}$T $b_{0.15}$) $P_{1.15}$ $O_{{\delta}}$이였으며, 현재 상용화된 Z $n_2$ $SiO_4$:Mn 형광체에 비해 상대적으로 높은 발광효율을 나타내었으며, 잔광시간도 줄일 수 있게 되었다.

가돌리늄 조영제 주입에 따른 1H-MRS spectrum의 정량적 비교 (Quantitative Comparison of 1H-MRS Spectra Depending on the Paramagnetic Gadolinium Contrast Agent(GBCA) Injection)

  • 최관우;손순룡;유병규
    • 한국방사선학회논문지
    • /
    • 제11권7호
    • /
    • pp.589-595
    • /
    • 2017
  • 본 연구는 1H-MRS 검사 시 조영제 사용이 대사물질의 spectrum에 어떤 영향을 미치는지 비교 분석함으로써, 조영제 주입 후 MRS 시행의 가능성을 알아보고자 하였다. 연구방법은 2017년 1월부터 동년 5월까지 뇌 MRI 검사를 시행한 30명을 대상으로, 조영제 주입 전, 후 전두엽 백질 부분의 spectrum을 획득하여 뇌 조직의 대사물질 spectrum을 비교평가 하였다. 연구결과, 조영제를 주입할 경우 각 대사물질의 spectrum은 통계적으로 의미가 없어 조영제 사용이 대사물질의 spectrum에 영향을 미치지 않음을 알 수 있었다. 결론적으로 대조도가 떨어져 병변의 위치파악이 힘든 경우 정확한 위치의 spectrum을 얻기 위해선 조영제를 사용하여 대조도를 높인 다음 MRS를 시행하는 것이 바람직 할 것으로 사료된다.

구안와사(口眼喎斜) 환자(患者)의 Gadolinium-DPTA enhanced MRI 소견(所見)에 대한 임상적(臨床的) 고찰(考察) (Clinical Study on Gadolinium-DPTA enhanced MRI of Bell's palsy)

  • 김재수;최우석;김용석;고형균;강성길;김창환
    • Journal of Acupuncture Research
    • /
    • 제17권3호
    • /
    • pp.87-98
    • /
    • 2000
  • This study is designed to evaluate the clinical implications of Gd-DPTA (Gadolinium-diethyl enetriamine pentacetic acid) enhanced MRI(Magnetic resonance imaging) in Bell's palsy and find it's usefulness in Oriental Medicine In this study, 25 outparients with Bell's palsy were studied that MRI was performed. To evaluate degree of facial palsy, H-B(House-Brackmann) Grade was used. In Oriental Medical therapy, Acupuncture and Herbal medicine were treated. Subjective cause was divided into exposure to chill, fatigue, stress, mixed cases. Enhanced site was compared with symptoms which were disorder of eye, hearing, taste, and facial muscle palsy. Also, Relation between time which was performed MRI and enhancement was analyzed. The enhanced lesion in MRI was divided into five segments; Internal audiitory canal, Labyrinthine segment, Geniculate ganglion, Tympanic segment, Mastoid segment. In Bell's palsy, 20 of 25 patients(80%) had abnormal contrast enhancement of the facial nerve. The H-B grade and interval performed MRI from onset were directly proportionate to enhancement. That is to say, Severe facial palsy short interval show high possibility of enhancement. There was no relation between subjective causes and enhanced site of facial nerve in MRI. Also Clinical symptoms didn't coincide with MRI findings.

  • PDF

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.652-658
    • /
    • 2016
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.

Hepatic Gene Expression Analysis of Gadolinium Chloride Treated Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Kim, Yong-Bum;Kim, Chul-Tae;Lee, Nam-Seob;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Gadolinium chloride ($GdCl_{3}$) was known to block Kupffer cells and generally its toxicity study based on blocking these cells. Therefore, $GdCl_{3}$ frequently used to study toxic mechanisms of hepatotoxicants inducing injury through Kupffer cells. We also tried to investigate the effect of $GdCl_{3}\;on\;CCl_{4}$ toxicity, typical hepatotoxicants. Administration of $GdCl_{3}$ to mice significantly suppressed AST (asparatate amino transferase), ALT (alanine amino transferase) levels which were increased by $CCl_{4}$ treatment. However, $GdCl_{3}$ didn't inhibit the phagocytotic activity of Kupffer cells. Malondialdehyde (MDA) is a good indicator of the degree of lipid peroxidation. In this study, MDA increased by $GdCl_{3}$ administration not by $CCl_{4}$. To understand the toxicity of $GdCl_{3}$, we analyzed global gene expression profile of mice liver after acute $GdCl_{3}$ injection. Four hundred fifty two genes were differentially expressed with more than 2-fold in at least one time point among 3 hr, 6 hr, and 24 hr. Several genes involved in fibrogenesis regulation. Several types of pro-collagens (Col1a2, Col5a2, Col6a3, and Col13a1) and tissue inhibitor of metal-loproteinase1 (TIMP1) were up regulated during all the time points. Genes related to growth factors, chemokines, and oxidative stress, which were known to control fibrogenesis, were significantly changed. In addition, $GdCl_{3}$ induced abnormal regulation between lipid synthesis and degradation related genes. These data will provide the information about influence of $GdCl_{3}$ to hepatotoxicity.

서스펜션 플라즈마 용사로 제조된 란타눔/가돌리늄 지르코네이트 열차폐코팅의 구조와 열전도도 특성 (Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated via Suspension Plasma Spray)

  • 권창섭;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.316-322
    • /
    • 2014
  • With increase in demand for higher operating temperatures of gas turbines, extensive research efforts have been carried out to enhance the performance of thermal barrier coatings (TBCs) in the field of coating processing as well as materials. In this study, thermal barrier coatings in lanthanum/gadolinium zirconate system, which is one of the most promising candidates for replacing yttira-stabilized zirconia (YSZ) in thermal barrier coating applications, are fabricated via suspension plasma spray. Dense, $300{\sim}400{\mu}m$ thick coatings of fluoritephase zirconate with modest amount of segmented microstructures are obtained by using suspension plasma spray with suspensions of planetary-milled mixture between lanthanum and/or gadolinium oxide and nano zirconia. These coatings exhibit thermal conductivities of 1.6 ~ 1.7 W/mK at $1000^{\circ}C$, which is relatively lower than that of YSZ.

뇌척수액 미세순환을 통한 래트 내이 외림프의 가돌리늄 조영제 증강 특성 (Enhancement Characteristics of Gadolinium Contrast Agent in the Rat Inner Ear Perilymph through CSF microcirculation)

  • 김민정;이상열;이희중;이태관;장용민
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.193-198
    • /
    • 2022
  • Contrast enhanced magnetic resonance imaging using gadolinium-based contrast agent (GBCA) is a very useful in vivo technique to visualize the inner ear pathology including endolymphatic hydrops. Although systemic intravenous (IV) administration can visualize the perilymph space, the visualization was possible by indirect passage of contrast agent through blood-perilymph barrier. All animal experimental procedures were performed under anesthesia with 5% isoflurane. Lipopolysaccharide (LPS) was instilled into the left tympanic cavity through the tympanic membrane using a sterile 27gauge needle to induce hydrops model. Tucker-Davis Technologies system was used to measure Auditory Brainstem Responses (ABRs). For intracerebroven-tricular (ICV) administration, 25 µmol of GADOVIST (Bayer, Berlin, Germany) was used and diluted GADOVIST injection was 10 µl. MR imaging was acquired with a 9.4 Tesla MRI scanner. Transmit-receive volume coil with 40 mm inner diameter and 75 mm out diameter was used. ICV administration well demonstrated the strong enhancement along the cerebrospinal fluid (CSF) microcirculation pathway including CSF fluid in the subarachnoid space and CSF space of the inner ear structures. On the other hand, IV administration showed no contrast enhancement along the CSF microcirculation pathway and showed weak enhancement in the inner ear structures. In case of rat hydrops model, ICV administration showed that the reduced contrast enhancement in the perilymph space of the hydrops induced inner ear compared to the contrast enhancement in the perilymph space of the normal inner ear. New systemic ICV administration method provide contrast enhancement of GBCA in the inner ear through CSF microcirculation pathway.

Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging

  • Kobayashi, Yoshio;Morimoto, Hikaru;Nakagawa, Tomohiko;Gonda, Kohsuke;Ohuchi, Noriaki
    • Advances in nano research
    • /
    • 제1권3호
    • /
    • pp.159-169
    • /
    • 2013
  • A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.