• Title/Summary/Keyword: gadolinium

Search Result 328, Processing Time 0.03 seconds

Multi-task Deep Neural Network Model for T1CE Image Synthesis and Tumor Region Segmentation in Glioblastoma Patients (교모세포종 환자의 T1CE 영상 생성 및 암 영역분할을 위한 멀티 태스크 심층신경망 모델)

  • Kim, Eunjin;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.474-476
    • /
    • 2021
  • Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.

  • PDF

Investigation of the Characteristics of New, Uniform, Extremely Small Iron-Based Nanoparticles as T1 Contrast Agents for MRI

  • Young Ho So;Whal Lee;Eun-Ah Park;Pan Ki Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1708-1718
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the magnetic resonance (MR) characteristics and applicability of new, uniform, extremely small iron-based nanoparticles (ESIONs) with 3-4-nm iron cores using contrast-enhanced magnetic resonance angiography (MRA). Materials and Methods: Seven types of ESIONs were used in phantom and animal experiments with 1.5T, 3T, and 4.7T scanners. The MR characteristics of the ESIONs were evaluated via phantom experiments. With the ESIONs selected by the phantom experiments, animal experiments were performed on eight rabbits. In the animal experiments, the in vivo kinetics and enhancement effect of the ESIONs were evaluated using half-diluted and non-diluted ESIONs. The between-group differences were assessed using a linear mixed model. A commercially available gadolinium-based contrast agent (GBCA) was used as a control. Results: All ESIONs showed a good T1 shortening effect and were applicable for MRA at 1.5T and 3T. The relaxivity ratio of the ESIONs increased with increasing magnetic field strength. In the animal experiments, the ESIONs showed peak signal intensity on the first-pass images and persistent vascular enhancement until 90 minutes. On the 1-week follow-up images, the ESIONs were nearly washed out from the vascular structures and organs. The peak signal intensity on the first-pass images showed no significant difference between the non-diluted ESIONs with 3-mm iron cores and GBCA (p = 1.000). On the 10-minutes post-contrast images, the non-diluted ESIONs showed a significantly higher signal intensity than did the GBCA (p < 0.001). Conclusion: In the phantom experiments, the ESIONs with 3-4-nm iron oxide cores showed a good T1 shortening effect at 1.5T and 3T. In the animal experiments, the ESIONs with 3-nm iron cores showed comparable enhancement on the first-pass images and superior enhancement effect on the delayed images compared to the commercially available GBCA at 3T.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Gadoxetate-Enhanced MRI as a Diagnostic Tool in the Management of Hepatocellular Carcinoma: Report from a 2020 Asia-Pacific Multidisciplinary Expert Meeting

  • Cher Heng Tan;Shu-cheng Chou;Nakarin Inmutto;Ke Ma;RuoFan Sheng;YingHong Shi;Zhongguo Zhou;Akira Yamada;Ryosuke Tateishi
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.697-719
    • /
    • 2022
  • Gadoxetate magnetic resonance imaging (MRI) is widely used in clinical practice for liver imaging. For optimal use, we must understand both its advantages and limitations. This article is the outcome of an online advisory board meeting and subsequent discussions by a multidisciplinary group of experts on liver diseases across the Asia-Pacific region, first held on September 28, 2020. Here, we review the technical considerations for the use of gadoxetate, its current role in the management of patients with hepatocellular carcinoma (HCC), and its relevance in consensus guidelines for HCC imaging diagnosis. In the latter part of this review, we examine recent evidence evaluating the impact of gadoxetate on clinical outcomes on a continuum from diagnosis to treatment decision-making and follow-up. In conclusion, we outline the potential future roles of gadoxetate MRI based on an evolving understanding of the clinical utility of this contrast agent in the management of patients at risk of, or with, HCC.

MR Imaging-Histopathologic Correlation of Radiofrequency Thermal Ablation Lesion in a Rabbit Liver Model: Observation during Acute and Chronic Stages

  • Jong Deok Lee;Jeong Min Lee;Sang Won Kim;Chong Soo Kim;Woo Sung Mun
    • Korean Journal of Radiology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2001
  • Objective: To determine the ability of MR imaging to detect the pathological changes occurring in radiofrequency (RF) thermal lesions and to assess its accuracy in revealing the extent of tissue necrosis. Materials and Methods: Using an RF electrode, thermal lesions were created in the livers of 18 rabbits. The procedure involved three phases. In the acute phase, six animals were killed the day after performing thermal ablation with RF energy, and two on day 3. In the subacute and chronic phases, eight rabbits underwent percutaneous hepatic RF ablation. After performing MR imaging, two animals were sacrificed at 1, 2, 4, and 7 weeks after the procedure, and MRpathologic correlation was performed. Results: In the acute phase, the thermal ablation lesions appeared at gross examination as well-circumscribed, necrotic areas, representing early change in the coagulative necrosis seen at microscopic examination. They were hypointense on T2-weighted images, and hyperintense on T1-weighted images. Gadolinium-enhanced MR imaging showed that a thin hyperemic rim surrounded the central coagulative necrosis. In the subacute phase, ablated lesions also showed extensive coagulative necrosis and marked inflammation at microscopic examination. Beyond two weeks, the lesions showed gradual resorption of the necrotic area, with a peripheral fibrovascular rim. The size of lesions measured by MR imaging correlated well with the findings at gross pathologic examination. Conclusion: MR imaging effectively demonstrates the histopathological tissue change occurring after thermal ablation, and accurately determines the extent of the target area.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Evaluation by Contrast-Enhanced MR Imaging of the Lateral Border Zone in Reperfused Myocardial Infarction in a Cat Model

  • Ae Kyung Jeong;Sang Il Choi;Dong Hun Kim;Sung Bin Park;Seoung Soo Lee;Seong Hoon Choi;Tae-Hwan Lim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • Objective: To identify and evaluate the lateral border zone by comparing the size and distribution of the abnormal signal area demonstrated by MR imaging with the infarct area revealed by pathological examination in a reperfused myocardial infarction cat model. Materials and Methods: In eight cats, the left anterior descending coronary artery was occluded for 90 minutes, and this was followed by 90 minutes of reperfusion. ECG-triggered breath-hold turbo spin-echo T2-weighted MR images were initially obtained along the short axis of the heart before the administration of contrast media. After the injection of Gadomer-17 and Gadophrin-2, contrast-enhanced T1-weighted MR images were obtained for three hours. The size of the abnormal signal area seen on each image was compared with that of the infarct area after TTC staining. To assess ultrastructural changes in the myocardium at the infarct area, lateral border zone and normal myocardium, electron microscopic examination was performed. Results: The high signal area seen on T2-weighted images and the enhanced area seen on Gadomer-17-enhanced T1WI were larger than the enhanced area on Gadophrin-2-enhanced T1WI and the infarct area revealed by TTC staining; the difference was expressed as a percentage of the size of the total left ventricle mass (T2= 39.2 %; Gadomer-17 =37.25 % vs Gadophrin-2 = 29.6 %; TTC staining = 28.2 %; p < 0.05). The ultrastructural changes seen at the lateral border zone were compatible with reversible myocardial damage. Conclusion: In a reperfused myocardial infarction cat model, the presence and size of the lateral border zone can be determined by means of Gadomer-17- and Gadophrin-2-enhanced MR imaging.

  • PDF

Tuberculous Pericarditis Mimicking a Malignant Pericardial Tumor: A Case Report (악성 심막 종양으로 오인한 결핵성 심막염: 증례 보고)

  • Ji Young Park;Ji-Yeon Han;Jinyoung Park;Gi Won Shin;Su Young Yun;Mi Seon Kang;Da Som Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.197-203
    • /
    • 2024
  • Tuberculous pericarditis is an extrapulmonary manifestation of tuberculosis that is most commonly associated with pericardial thickening, effusion, and calcification. We present a case of tuberculous pericarditis mimicking a malignant pericardial tumor in a 77-year-old male. CT revealed an irregular and nodular pericardial thickening. MRI revealed high signal intensity on T1-weighted fat-suppressed images and peripheral rim enhancement after gadolinium administration. MRI can be helpful in determining the differential diagnoses in cases of tuberculous pericarditis with nonspecific imaging findings.

Clinical Significance of MR Imaging for the Diagnosis and Treatment of Subungual Glomus Tumor in the Fingers (수지 조갑하 사구종의 진단 및 치료에서 자기 공명 영상의 임상적 의미)

  • Kim, Byoung-Suck;Kim, Woo-Sig;Han, Kyoung-Jin;Cho, Jae-Hyun;Lee, Kyi-Beom;Ha, Heon-Kyo;Kang, Shin-Young
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2001
  • Purpose : Authors investigated the efficiency of preoperative MRI in suspicious glomus tumor and the clinical outcomes after marginal excision. Materials and Methods : In 10 cases of glomus tumors in the fingers, authors retrospectively analyzed the clinical data, including previous trauma, treatment history, preoperative symptoms, physical examination, plain radiography, MRI (9 cases), pathological findings and postoperative complications. Results : The patients had pain in 10 cases, tenderness in 9 cases, cold sensitivity in 3 cases and edema in one case. MRI showed low signal (3 cases) or iso-signal (5) intensity on T1 weighted image, high signal intensity (8) on T2 weighted image, and all the lesions were enhanced in gadolinium enhancement images. The exact locations of glomus tumors were median in 6 cases, lateral in 5, lateral fold in 2 and pulp in 3 in transverse section and nail bed in 5 cases and nail matrix in 5 in sagittal section. Marginal excision was performed by lateral approach in one case and transungual in 9 cases. Histologically, all 10 cases were composed of solid sheets of round cells interrupted by thin-walled blood vessels. Most of clinical symptoms were disappeared in all cases after operation. Nail deformity was found in one case, which was originated from nail matrix, however, there was no recurrence. Summary : Clinical symptom was the most impotant factor in diagnosis of glomus tumor in the fingers. However, preoperative MRIs were helpful in patients, who had obscure pain or prolonged clinical symptoms with suspicious glomus tumors. Preoperative MRI might be one of the most useful tools for establishing the exact diagnosis and detecting the location of glomus tumors, in spite of the relatively high expenses.

  • PDF

Gadoteridol's Signal Change according to TR, TE Parameters in T1 Image (T1영상에서 TR, TE 매개변수에 따른 Gadoteridol의 신호강도 변화)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, we introduce how to control TR, TE physical MR parameters for managing $H_1$ spin's SI(Signal Intensity) which is combined with gadolinium following administration MR agent in T1 effect for diagnostic usefulness. we used MRI phantom made with 0.5 mol Gadoteridol. This phantom was scanned by FSE sequence with different TR, TE parameters. In this study, to make T1 effect, TR was 200, 250, 300, 350, 400, 450, 500, 550, 600 msec. In addition to, TE was 6.2, 12.4, 18.6, 21.6 msec. The results were as follows ; Each RSP(Reaction Starting Point) was 100, 50, 40, 30 mmol in TE 6.2, 12.4, 18.6, 21.6 msec being irrelevant to TR. In MPSI(Max Peak Signal Intensity), 4 mmol was showed in TR 200 msec while peak signal was decreased to low concentration mol in TR 250-600 msec. In terms of RA(Reaction Area), the highest SI was TE 6.2 msec in TR 200-600msec. According to the study, we are able to recognize it is possible to control enhance rates by managing TR and TE of MR parameters; moreover, we expect that enhanced T1 image in MR clinical field can be performed in a practical way with this quantitative data.