• 제목/요약/키워드: g-tensor

검색결과 155건 처리시간 0.023초

A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

  • Hwajeong Kim
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.133-137
    • /
    • 2023
  • Consider a Riemannian manifold M equipped with a metric g. In this article, we study a notion for statistical manifolds (M, g, ∇), which can have a nonzero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and ${\tilde{\nabla}}g$ obtained from two different SMT-connections are different.

THE STUDY ON THE EINSTEIN'S CONNECTION IN 5-DIMENSIONAL ES-MANIFOLD FOR THE SECOND CLASS

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.43-51
    • /
    • 2018
  • The manifold $^{\ast}g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to derive a new set of powerful recurrence relations and to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 5-dimensional $^{\ast}g-ESX_5$ and to display a surveyable tnesorial representation of 5-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the second class.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • Hwang, In-Ho;Han, Soo-Kyung;Chung, Kyung-Tae
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.53-64
    • /
    • 2008
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein 's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the cases of the second class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • HAN, SOO KYUNG;HWANG, IN HO;CHUNG, KYUNG TAE
    • 호남수학학술지
    • /
    • 제27권1호
    • /
    • pp.131-140
    • /
    • 2005
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the second class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the case of the first class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

ξ-PARALLEL STRUCTURE JACOBI OPERATORS OF REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KIM, NAM-GIL;KI, U-HANG
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.573-589
    • /
    • 2006
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ in a non flat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}$ is ${\xi}$-parallel and the Ricci tensor S commutes with the structure operator $\phi$, then a real hypersurface in $M_n(c)$ is a Hopf hypersurface. Further, we characterize such Hopf hypersurface in $M_n(c)$.

  • PDF