• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.027 seconds

Design of Polynomial Neural Network Classifier for Pattern Classification with Two Classes

  • Park, Byoung-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.108-114
    • /
    • 2008
  • Polynomial networks have been known to have excellent properties as classifiers and universal approximators to the optimal Bayes classifier. In this paper, the use of polynomial neural networks is proposed for efficient implementation of the polynomial-based classifiers. The polynomial neural network is a trainable device consisting of some rules and three processes. The three processes are assumption, effect, and fuzzy inference. The assumption process is driven by fuzzy c-means and the effect processes deals with a polynomial function. A learning algorithm for the polynomial neural network is developed and its performance is compared with that of previous studies.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Design of Neuro-Fuzzy Controllers for DC Motor Systems with Friction

  • Kim, Min-Jae;Jun oh Jang;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.70-70
    • /
    • 2000
  • Recently, a neuro-fuzzy approach, a combination of neural networks and fuzzy reasoning, has been playing an important role in the motor control. In this paper, a novel method of fiction compensation using neuro-fuzzy architecture has been shown to significantly improve the performance of a DC motor system with nonlinear friction characteristics. The structure of the controller is the neuro-fuzzy network with the TS(Takagi-Sugeno) model. A back-propagation neural network based on a gradient descent algorithm is employed, and all of its parameters can be on-line trained. The performance of the proposed controller is compared with both a conventional neuro-controller and a PI controller.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.

Pre-earthquake fuzzy logic and neural network based rapid visual screening of buildings

  • Moseley, V.J.;Dritsos, S.E.;Kolaksis, D.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.77-97
    • /
    • 2007
  • When assessing buildings that may collapse during a large earthquake, conventional rapid visual screening procedures generally provide good results when identifying buildings for further investigation. Unfortunately, their accuracy at identify buildings at risk is not so good. In addition, there appears to be little room for improvement. This paper investigates an alternative screening procedure based on fuzzy logic and artificial neural networks. Two databases of buildings damaged during the Athens earthquake of 1999 are used for training purposes. Extremely good results are obtained from one database and not so good results are obtained from the second database. This finding illustrates the importance of specifically collecting data tailored to the requirements of the fuzzy logic based rapid visual screening procedure. In general, results demonstrate that the trained fuzzy logic based rapid visual screening procedure represents a marked improvement when identifying buildings at risk. In particular, when smaller percentages of the buildings with high damage scores are extracted for further investigation, the proposed fuzzy screening procedure becomes more efficient. This paper shows that the proposed procedure has a significant optimisation potential, is worth pursuing and, to this end, a strategy that outlines the future development of the fuzzy logic based rapid visual screening procedure is proposed.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Fuzzy Inference Network and Search Strategy using Neural Logic Network (신경논리망을 이용한 퍼지추론 네트워크와 탐색전략)

  • 이말례
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF