• 제목/요약/키워드: fuzzy-based

검색결과 4,715건 처리시간 0.071초

Takagi-Sugeno Fuzzy Model-Based Approach to Robust Control of Boost DC-DC Converters

  • Seo, Sang-Wha;Choi, Han Ho;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.925-934
    • /
    • 2015
  • This paper considers the robust controller design problem for a boost DC-DC converter. Based on the Takagi-Sugeno fuzzy model-based approach, a fuzzy controller as well as a fuzzy load conductance observer are designed. Sufficient conditions for the existence of the controller and the observer are derived using Linear Matrix Inequalities (LMIs). LMI parameterizations of the gain matrices are obtained. Additionally, LMI conditions for the existence of the fuzzy controller and the fuzzy load observer guaranteeing α-stability, quadratic performance are derived. The exponential stability of the augmented fuzzy observer-controller system is shown. It is also shown that the fuzzy load observer and the fuzzy controller can be designed independently. Finally, the effectiveness of the proposed method is verified via experimental and simulation results under various conditions.

데이터 정보입자 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Inference Systems Based on Data Information Granulation)

  • 오성권;박건준;이동윤
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

퍼지기반 Segment-Boost 방법을 통한 효과적인 얼굴인식 (Fuzzy-based Segment-Boost Method for Effective Face Recognition)

  • 장원석;노창현;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제18권1호
    • /
    • pp.17-25
    • /
    • 2009
  • 본 논문에서는 퍼지기반 Segment-Boost 방법을 소개하고, 이를 이용한 효과적인 얼굴인식 방법을 제안한다. 퍼지기반 Segment-Boost는 기존의 Segment-Boost가 갖고 있던 문제점과 성능의 한계요소들을 제거함으로써, 향상된 학습 성능뿐만 아니라 학습 성능의 안정성과 신뢰성을 보장하여 준다. 퍼지기반 Segment-Boost는 퍼지이론을 이용함으로써 서브벡터 선택개수를 최적화하고, 이를 통해 최상의 학습 성능이 유도될 수 있도록 설계되었다. 또한, 퍼지기반 Segment-Boost 내에서의 퍼지추론을 위해 본 논문에서 설계한 퍼지 제어기는 퍼지기반 Segment-Boost의 학습 성능을 측정하고, 최적화된 서브벡터 선택개수를 추론함으로써 서브벡터 선택개수를 제어한다. 시뮬레이션 결과, 본 논문에서 설계한 퍼지 제어기는 실제 최적의 서브벡터 선택개수에 매우 근접한 값을 추론하였다. 그 결과, 퍼지기반 Segment-Boost는 비교 실험한 boosting 방법보다 높은 얼굴인식률을 보여줌과 동시에 기존 Segment-Boost 만큼의 빠른 특징선택 속도를 유지하였고, 이러한 실험결과를 통해 퍼지기반 Segment-Boost의 학습 성능과 이를 이용한 특징선택 및 얼굴인식 방법에 있어서의 성능향상 및 안정성이 입증되었다.

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS

  • Jun, Y.B.;Dudek, W.A.;Shabir, M.;Kang, Min-Su
    • 호남수학학술지
    • /
    • 제32권3호
    • /
    • pp.413-439
    • /
    • 2010
  • W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of (${\alpha},{\beta}$)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on (${\alpha},{\beta}$)-fuzzy ideals of hemirings. As a generalization of the notions of $({\alpha},\;\in{\vee}q)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q)$-fuzzy k-ideals, the concepts of $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideal (resp. $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideal, $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.

TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용 (Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems)

  • 장욱;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

CHROMATIC NUMBER OF BIPOLAR FUZZY GRAPHS

  • TAHMASBPOUR, A.;BORZOOEI, R.A.
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.49-60
    • /
    • 2016
  • In this paper, two different approaches to chromatic number of a bipolar fuzzy graph are introduced. The first approach is based on the α-cuts of a bipolar fuzzy graph and the second approach is based on the definition of Eslahchi and Onagh for chromatic number of a fuzzy graph. Finally, the bipolar fuzzy vertex chromatic number and the edge chromatic number of a complete bipolar fuzzy graph, characterized.

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF