• 제목/요약/키워드: fuzzy time series

검색결과 192건 처리시간 0.026초

GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용 (Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process)

  • 오성권;황형수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.96-105
    • /
    • 1997
  • 본 논문에서는 복잡한 비선형 시스템의 모델동정을 위해 퍼지모델링의 새로운 방법이 제안된다. 제안된 FPNN모델링은 공정시스템의 입출력 데이터로부터 GMDH방법과 퍼지구현규칙을 이용하여 시스템의 구조와 파라미터 동정을 구현한다. 퍼지구현규칙의 전반부 구조와 파라미터 동정을 위하여 GMDH 방법과 희귀다항식 퍼지추론 방법이 사용되고 최적 후반부 파라미터 동정을 위하여 최소자승법이 사용된다. 가스로 시계열데이타 및 하수처리시스템의 활성화의 공정 데이터가 제안한 FPNN 모델링의 성능을 평가하기 위해 상용된다. 제안된 방법이 기존의 다른 논문과 비교하여 더 높은 정확도를 가진 지능형 모델을 생성함을 보인다.

  • PDF

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권4호
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구 (A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS)

  • 윤필선;윤희성;김용철;김규범
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.

NEWFM 기반 가중평균 역퍼지화에 의한 비선형 시계열 예측 모델링 (Nonlinear Time Series Prediction Modeling by Weighted Average Defuzzification Based on NEWFM)

  • 채수한;임준식
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.563-568
    • /
    • 2007
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 클래스의 분류강도를 구하고 비선형 시계열 추이선을 예측하는 방안을 제안하고 있다. NEWFM에 의하여 추출된 가중퍼지 소속함수(BSWFM)를 이용하여 입력값에 대한 분류강도를 구하게 되고, 이들에 대한 가중평균 역퍼지화를 통하여 비선형 시계열 추이선을 작성한다. 실증분석결과 NEWFM은 목표 클래스로 설정된 GDP에 대하여 92.22%의 분류성능을 보여 주었다. 따라서 동 비선형 시계열 추이선은 대표적인 경기지표인 GDP 추이에 비교적 높은 유사도를 나타내는 가운데 분석대상기간인 제5순환기-제8순환기 중 정점(peak)에서 평균 12개월, 저점(trough)에서 평균 6개월의 선행성(look-ahead)을 보여 줌으로써 경기변동에 앞서 상당기간의 시차를 둔 예측지표로서 활용가능성이 입증되었다. NEWFM은 그 특징선택(feature selection)에 의하여 선행지표 10개 중 3개의 축소를 기할 수 있게 해 줌으로써 보다 적은 수의 경제지표를 가지고도 분류성능을 90.0%에서 92.22%로 향상을 기하는 가운데 효율적인 예측기능을 수행할 수 있음이 입증되었다.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

RCGKA를 이용한 최적 퍼지 예측 시스템 설계 (Design of the Optimal Fuzzy Prediction Systems using RCGKA)

  • 방영근;심재선;이철희
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF

퍼지추론기법을 이용한 탱크 레벨 제어 (Tank Level Control using Fuzzy Inference Technique)

  • 지석준;전부찬;박두환;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.724-727
    • /
    • 1997
  • This paper describes a control method of tank level using Fuzzy Inference Technique. In General, to control tank level without a dangerous overflow and with a high accuracy is difficult because of high order time delay and nonlinearity. None the less, the hardware controller using 80586 Microprocessor with DT-2801 board in this paper was successfully implemented, through a series of simulations and experiments, the superiority of the proposed fuzzy controller ta a conventional PID one was investigated.

  • PDF

Fuzzy Decision을 사용한 단기부하예측 전문가 시스템 (An Expert System for Short Term Load Forecasting by Fuzzy Decision)

  • 박영일;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.118-121
    • /
    • 1988
  • Load forecasting is an important issue as for the economic dispatch and there have been many researches which are classfied into two classes, time series method and factor analysis method. But the former is not adaptive for a sudden change of a correlated factor and the latter is not inefficient as the factor estimation is not easy. To make matters worse, both of them are not good for the estimation of special days. It is because the load forecasting is not a problem modeled precisely in mathematics, but a problem requires experience and knowledge those can solve it case by case. In this viewpoint, an expert system is proposed which can use complicated experience of an expert by use of fuzzy decision.

  • PDF