• Title/Summary/Keyword: fuzzy stability

Search Result 621, Processing Time 0.029 seconds

Fuzzy Control Strategy for Damping Sub-Synchronous Resonance

  • Qader, M.R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1791-1797
    • /
    • 2018
  • Sub-Synchronous Resonance (SSR) is a phenomenon that harms turbine generator shafts because the phenomenon induces sub-synchronous wavering in the system. In the study presented in this paper, a dynamic resistance bank is used to mitigate the occurrence of sub-synchronous phenomenon. A fuzzy logic controller using rotor speed deviation and its derivative as inputs is implemented to damp sub-synchronous oscillations more efficiently. An eigenvalue technique is used to analyse the stability of the system, and a simulation in MATLAB is conducted, based on the IEEE Second Benchmark, to validate the effectiveness of the proposed method under a 3-phase fault condition at an infinite bus. The time-domain simulation and eigenvalues are used to observe the proposed method's superior ability to damp sub-synchronous oscillation.

Direct Adaptive Fuzzy Control with State Observer for Unknown Nonlinear Systems (상태 관측기를 이용한 미지의 비선형 시스템의 직접 적응 퍼지 제어)

  • Kim, Hyung-Joong;Hwang, Young-Ho;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2190-2192
    • /
    • 2003
  • In this paper, a state observer based direct adaptive fuzzy controller for unknown nonlinear dynamical system is presented. The adaptive parameters of the direct adaptive fuzzy controller can be tuned by using a projection algorithm on-line based on the Lyapunov synthesis approach. A maximum control is used to guarantee the robustness of system. A stability analysis of the overall adaptive scheme is discussed based on the sense of Lyapunov. The inverted pendulum simulation example shows that proposed control algorithm can be used for the tracking problem of nonlinear system.

  • PDF

Power System Stabilization using Self Tuning Fuzzy Controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • Chung, H.H.;Chung, D.I.;Joo, S.M.;Koh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.48-50
    • /
    • 1994
  • In this paper, the optimal fuzzy controller of exciter and governor in synchronous generator improve the stability of power system with varying loads and disturbances in power system. Parameters of the proposed fuzzy controller were optimally self-tuned by the steepest descent method and were applied to power system stabilization. The related simulation results show that the proposed control technique are more powerful than the conventional ones for reductions of undershoot and for minimization of settling time.

  • PDF

Adaptive Fuzzy Wavelet Control for a class of Uncertain Nonlinear Systems (불확실성을 갖는 비선형 시스템의 적응 퍼지 웨이브렛 제어)

  • Jang, Jin-Su;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1726-1727
    • /
    • 2007
  • In this paper, a systematic guideline is introduced to design a stable adaptive fuzzy wavelet controller with sliding mode for a class of uncertain nonlinear systems. Based on the Lyapunov synthesis approach, we construct the fuzzy wavelet controller such that it can basically control and guarantee the stability of the whole control system. On the other hand, a robust controller is design to restrain or eliminate the disturbance and assure the desired output accuracy of a control system. Some experimental results for a chaotic system are provided here to demonstrate the effectiveness of the control algorithm.

  • PDF

A study on the Improvement of control performance of Auto Steering System (자동조타기의 제어성능개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.114-117
    • /
    • 2005
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The Purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

Speed Control of Induction Motor Using Fuzzy-Sliding Adaptive Controller (퍼지-슬라이딩 모드 적응제어기에 의한 유도기 속도제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Chan-Ki;Yang, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.331-333
    • /
    • 1995
  • A high performance motor drive system must have a good speed command tracking, a insensitivity to a parameter variation and sampling time. In this paper, a robust speed controller for an induction motor is proposed. The speed controller is fuzzy-sliding adaptive controller and its system continuously is varied. That is, only P gain act in dynamic state, I gain in steady-state. Because this system is a sort of adaptive control system, global stability analysis is used to Lyapunov function. Consequently, in this paper application of fuzzy sliding adaptive controller to induction motor controlled by vecter control is presented and the control system is digitally implemented within DSP.

  • PDF

A Study on the Improvement of Control Characteristic and Performance of the Marine Mechanical-Hydraulic Governor using Fuzzy Control Scheme (퍼지 제어기법에 따른 선박용 유압조속기의 제어특성 및 성능개선에 관한 연구)

  • 강창남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.137-143
    • /
    • 1996
  • The propulsion marine diesel engine has been widely applied with a mechanical-hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechanical-hydraullic governor to control the speed of engine under the condition of low speed and low load because of jiggling and hunting by rough fluctuation of rotating torque. To solve these problems of control systems, the performance improvement of mechanical-hydraulic governor is required. In this paper, in order to analyze the speed stability of control systems, the influence of parameters of the engine dead time, gain, damping ratio was discussed on the view of control engineering. The performance improvement of a conventional mechanical hydraulic governor is confirmed to be possible by fuzzy control scheme.

  • PDF

Design of the Fuzzy-based Mobile Model for Energy Efficiency within a Wireless Sensor Network

  • Yun, Dai Yeol;Lee, Daesung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.136-141
    • /
    • 2021
  • Research on wireless sensor networks has focused on the monitoring and characterization of large-scale physical environments and the tracking of various environmental or physical conditions, such as temperature, pressure, and wind speed. We propose a stochastic mobility model that can be applied to a MANET (Mobile Ad-hoc NETwork). environment, and apply this mobility model to a newly proposed clustering-based routing protocol. To verify its stability and durability, we compared the proposed stochastic mobility model with a random model in terms of energy efficiency. The FND (First Node Dead) was measured and compared to verify the performance of the newly designed protocol. In this paper, we describe the proposed mobility model, quantify the changes to the mobile environment, and detail the selection of cluster heads and clusters formed using a fuzzy inference system. After the clusters are configured, the collected data are sent to a base station. Studies on clustering-based routing protocols and stochastic mobility models for MANET applications have shown that these strategies improve the energy efficiency of a network.

LDI NN auxiliary modeling and control design for nonlinear systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.693-703
    • /
    • 2022
  • This study investigates an effective approach to stabilize nonlinear systems. To ensure the asymptotic nonlinear stability in nonlinear discrete-time systems, the present study presents controller for an EBA (Evolved Bat Algorithm) NN (fuzzy neural network) in the algorithm. In fuzzy evolved NN modeling, the auxiliary circuit with high frequency LDI (linear differential inclusions) and NN model representation is developed for the nonlinear arbitrary dynamics. An example is utilized to demonstrate the system more robust compared with traditional control systems.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.