본 연구는 퍼지이론을 공간분석에 적용하기 위한 이론적인 배경을 고찰하고, 퍼지 분류법의 특성에 대해 살펴본 것이다. 이를 위해 필자는 공간정보의 모호성에 대해 살펴보 고, 퍼지공간분석의 전제를 설정한 다음 퍼지분류법을 소개하였다. 그리고 퍼지분류법의 특 성을 명확히 하기 위해 경상남도 읍급이상 도시의 산업별 고용비율을 대상으로 퍼지분류를 행한 후, 퍼지분류와 전통적인 군집분석의 결과를 비교하였다. 그 결과, 공간정보의 모호성 은 구체성의 부족, 인간행태, 인내치문제, 분류기준의 부족 등에 의해 발생하는데 기존의 공 간분석기법으로는 공간의 모호성을 반영할 수 없으므로 퍼지기법을 도입한 퍼지공간분석의 필요성이 있음을 확인하였다. 퍼지분류법 중, 퍼지이산분류는 계산절차는 상대적으로 간단하 나 분류결과가 집단간의 점이성을 고려하지 못하며, 퍼지중첩분류는 분류집단간의 점이성은 고려하나 분류결과가 지나치게 많아 적절한 분류수준을 선택하기 어렵고 결과해석이 상대적 으로 난해하다는 문제점이 있음이 밝혀졌다, 또 경남의 도시기능분류는 분류기법에 따라 다 르게 이루어졌지만 창원, 울산, 마산, 진해, 김해, 양산, 웅상, 장승포, 신현으로 구성된 제조 업 군집과 단독군집 충무의 존재가 세 가지 분류 모두에서 공통적으로 확인되었다.
선박 연료로서 LPG는 현재의 기술과 경제성 등을 고려하였을 때 매력적인 연료이다. 하지만, 아직 LPG 연료 선박의 안전 지침을 개발 중에 있고, 국내에서는 중소형 선박에 LPG 추진 시스템을 적용한 사례가 없다. 본 연구에서는 국내 최초 개발된 해상용 LPG 엔진 시스템에 대해 보다 객관적인 위험성 평가를 수행하고 안전 운용 기준을 제안하고자 한다. 우선, 위험과 운전 분석 기법을 통해 동 엔진 시스템을 5개의 검토 구간으로 분할하고 총 58가지의 위험요소를 식별하였다. 그다음 정성적 평가인 HAZOP 기법의 주관성을 보완하기 위해 퍼지 이론을 사용하고 검출도, 민감도 등 위험 요인을 추가하여 퍼지 분석적 계층 과정을 통해 위험 요인의 상대적 가중치를 비교하였다. 그 결과, 5가지의 위험 요인 중, 위험성에 가장 큰 영향을 미치는 위험 요인은 발생 빈도와 심각도로 평가되었다. 마지막으로, 위험 요인에 대한 가중치를 고려하여 위험 순위를 세밀하게 선정하기 위해 퍼지 TOPSIS 기법을 적용하였다. 그 결과, 위험 등급은 47개 그룹으로 구분할 수 있었고, 동 엔진 시스템의 운용 중 가장 위험도가 높은 위험요소는 LPG 공급 라인 유지 보수 중 가스 누출로 분석되었다. 본 연구에 제안된 기법을 LPG 공급계통 등 다양한 설비에도 적용하여, 향후 LPG 추진 선박의 안전 기준 마련을 위한 위험성 평가의 표준절차로 활용할 수 있기를 기대한다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
인상이나 감성적 기호가 구매에 영향을 주는 제품군의 디과인에 있어서는 사용자 시점으로부터의 감성적 평가를 디자인 프로세스의 보다 상류단계에서부터 실시하여 그 결과를 아이디어 스케치 개량을 위한 유효한 정보로서 피드백시킬 필요가 있다. 한편 감성적 평가에 있어서, SD법(의미미분척도법)으로 대표되는 종래의 이미지 평가에서는 계측대상을 [집단적인]경향으로 취급하여 독립적으로 판단을 하도록 요구되어져 왔다. 그러나 이러한 SD법적 평가만으로는 사물인지과정에 있어서 인간의 유연한 유사성 판단능력을 평가에 반영시키기에는 불충분하다. 따라서 본 연구에서는, 직감적 판단에 의한 자극의 분류와, 계층분석법 및 퍼지적분법에 기초를 둔 계층적 이미지 평가 방법을 제안하였다. 평가 프로세스는 평가 자극 및 평가 항목의 직감적 분류, 동일 카테고리 내에서의 대표예의 선정, 각 자극의 이미지평정, 피지적분법에 의한 우선도의 산출 등의 순서에 따라 진행되며, 이러한 평가 프로세스를 상호대화적인 환경하에서 수행하기 위한 평가지원용 소프트웨어를 개발하였다.
본 논문은 단순한 형태의 개인 착인 및 검증방법의 한계를 극복하여 절도나 누출에 의해 도용될 수 없고 변경되거나 분실할 위험성이 없는 새로운 형태의 인증 방법인 홍채인식을 연구하였다. 사람의 홍채는 태어날 때 한번 정해지면 평생 변화하지 않는 특성을 가지고 있으며, 개개인별로 모양이 모두 다른 것으로 알려져 있다. 이에, 본 논문에서는 홍채영상 취득 시 조명에 의한 동공의 크기 변화에 민감하지 않은 2차원의 홍채패턴을 취득하여, 2차 가버 웨이블릿과 퍼지 선형판별분석기법(LDA)을 이용하여 특징 벡터를 추출하고 인식한다. 인식과정에서는 상관관계 계수를 이용하여 다른 홍채의 특징간과 매칭값을 측정하고 유사도가 가장 큰 대상을 찾게 된다. 이때, 입력영상에 대하여 4개 방향의 가버 웨이블릿을 거쳐 얻어진 4개의 상관관계 계수 간 중 가장 큰 값을 갖는 대상자를 인식 대상자로 선정하므로 오인식될 확률을 최소화 할 수 있다. 제안한 알고리듬의 유용성을 확인하기 위해 대상자 50명에 대하여 각각 6회씩 촬영한 두 가지 데이타베이스(CASIA, CBNU)를 이용하였으며, 실험 결과 $90\%$ 이상의 인식률을 얻었다.
실내나 밀폐된 축사시설에서는 청정한 환경을 유지하기 위해 온도 습도 그리고 이산화탄소, 메탄가스 등과 같은 환경요인들을 측정하고 관리하여야 한다. 이때 측정된 수치가 관리대상 구간의 정상범위 내에 존재할지라도 시설이나 축적된 배설물과 주변 환경과의 상호작용 등으로 인한 예측치 못한 상황이 발생하면 측정수치는 급격하게 증가 또는 감소하게 된다. 본 논문에서는 이처럼 급격하게 증가하거나 감소하는 비정상 패턴의 변화가 발생할 경우, 이를 인식하여 위해 요소를 미리 제거할 수 있는 조기경고기법(EWarM)을 제안하였다. 그리고 이를 기반으로 한 퍼지 에이전트를 구현하였다. 다양한 상황에서의 성능평가를 통해 조기경고기법(EWarM)에 기반한 퍼지 에이전트가 위해 요소를 제거하는데 유용하다는 것이 입증되었다.
최근 여러 인터넷 서비스 업체에서 온라인 의료 진단 서비스 시스템을 제공하고 있다. 대부분 의료 진단 서비스 시스템은 서양 의학을 기초로 질병에 대한 처방이나 식이요법 등을 제공하기 때문에 전문 지식이 부족한 일반인들은 이용하기에 큰 어려움이 있다. 본 논문에서는 퍼지 ART 알고리즘을 적용하여 한국인 고유의 신체적 특성에 맞는 한의학 기반의 한방 자가 진단 시스템을 제안한다. 제안된 한방 자가 진단 시스템은 사용자가 제시한 증상과 이전에 진단 받았던 진료 기록을 바탕으로 이미 학습되어진 질병의 증상과 비교하여 신경망을 통해 유사도가 높은 상위 3개의 질병을 도출한다. 또한 상위 3개의 질병에 대해 질병의 전체적인 증상과 한의학 서적에서 제시한 민간요법을 제시한다. 질병과 증상에 대한 데이터베이스는 여러 한의학 서적을 통해 구축한 후 한의학 전문의의 검증을 거쳐 구현하였다. 제안된 한방 자가 진단 시스템은 진료 기록을 바탕으로 학습함으로써 기존의 질병 진단 시스템 보다 정확하게 질병을 진단한 것을 확인하였다.
본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.
본 논문은 그로스버그(Grossberg)에 의해 개발된 퍼지 ART 신경 회로망의 성능을 향상시키기 위하여 가변가중 평균(VWA) 학습 방법을 제안한다. 기존의 방법인 고속수용저속부호화(FCSR)는 입력패턴이 임의의 카테고리 내에 포함될 때 카테고리를 대표하는 대표패턴의 갱신이 입력패턴과의 거리(유사성)와 관계없이 고정 학습률로 갱신되고, 또한 이를 개선한 가변학습(VL)은 대표패턴과 입력패턴 사이의 거리를 대표패턴의 갱신에 반영하여 카테고리 증식 문제와 패턴 인식률을 개선한다. 그러나 두 방법 모두 학습 시 퍼지 AND에 의한 과도한 학습이 필수적으로 발생하여 카테고리 증식 문제와 패턴 인식 향상에 한계를 갖는다. 제안된 방법은 카테고리를 대표하는 대표패턴의 갱신 시 대표패턴과 입력패턴 사이의 거리를 반영한 가중평균 학습을 적용하여 대표패턴의 과도한 학습을 억제한다. 시뮬레이션 결과 기존의 학습 방법인 고속수용저속부호화(FCSR)와 가변학습(VL) 보다 제안된 가변가중평균(VWA) 학습 방법이 잡음 환경에서 대표패턴의 과도한 학습을 억제하여 퍼지 ART 신경 회로망의 카테고리 증식문제를 완화하고 패턴 인식률을 향상시키는 것을 보여준다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권2호
/
pp.119-124
/
2016
According to the expansion of smartphone penetration and development of wearable device, personal context information can be easily collected. To use this information, the context aware recommender system has been actively studied. The key issue in this field is how to deal with the context information, as users are influenced by different contexts while rating items. But measuring the similarity among contexts is not a trivial task. To solve this problem, we propose context aware post-filtering to apply the context compensation. To be specific, we calculate the compensation for different context information by measuring their average. After reflecting the compensation of the rating data, the mechanism recommends the items to the user. Based on the item recommendation list, we recover the rating score considering the context information. To verify the effectiveness of the proposed method, we use the real movie rating dataset. Experimental evaluation shows that our proposed method outperforms several state-of-the-art approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.