• 제목/요약/키워드: fuzzy seminorm

검색결과 6건 처리시간 0.014초

SOME PROPERTIES OF QUOTIENT FUZZY NORMED LINEAR SPACES

  • Hwang, In Ah;Rhie, Gil Seob;Sung, Yeoul Ouk
    • 충청수학회지
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 1997
  • The main goal of this paper is to investigate some properties of a quotient fuzzy seminorm ${\rho}_q$ induced by a fuzzy seminorm ${\rho}={\chi}_{B_{{\parallel}{\cdot}{\parallel}}}$ on a normed linear space X.

  • PDF

퍼지 Beppo Levi의 정리 (Fuzzy Beppo Levi′s Theorem)

  • Kim, Mi-Hye
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.510-514
    • /
    • 2004
  • In this paper, we introduce Fuzzy Beppo Levi's Theorem in which we use the supremum instead of addition in the expression of Beppo Levi's Theorem. That holds under the conditions which are continuity of t-seminorm ┬and the fuzzy additivity of a fuzzy measure g.

  • PDF

준 노름 퍼지 적분에 의해 정의된 퍼지 측도 (Fuzzy Measures Defined by the Semi-Normed Fuzzy Integrals)

  • Kim, Mi-Hye;Lee, Soon-Seok
    • 한국콘텐츠학회논문지
    • /
    • 제2권4호
    • /
    • pp.99-103
    • /
    • 2002
  • 본 논문에서는 t 준노름이 연속인 경우 이미 주어진 퍼지 측도에 관한 측정 가능한 함수의 준 노름 퍼지 적분을 이용하여 퍼지 측도를 정의하는 방법에 대해서 조사했다. 즉 (X, F, g)이 퍼지 측도 공간이라고 하고 h$\in$L$^\circ$(X), 이며 $\top$는 연속 t 준노름이라 하자. 그러면 임의의 $A\in$F에 대해 $\nu$(A)=$\int _A$h$\top$g에 의하여 정의된 집합치 함수 $\nu$는 (X, F)상에서 퍼지 측도이다.

  • PDF

구간 값을 갖는 함수의 준 노름 적분의 선형성 (Fuzzy Linearity of the Seminormed Fuzzy Integrals of Interval-valued Functions)

  • 김미혜;김미숙;이석종
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.262-266
    • /
    • 2004
  • 일반적으로 Lebesgue 적분에서 성립하지만 퍼지적분에서 성립되지 않는 성질이 몇 가지 있다. 그 중 하나가 선형성이다. 본 논문에서는 선형성 표현식에서 덧셈을 supremum 으로 곱셈을 infimum으로 대신한 퍼지선형성의 정의를 소개하고 구간값을 갖는 함수의 준노름 퍼지적분이 퍼지가법성을 갖는 퍼지 측도와 연속인 준 노름이 saturated 조건을 만족할 때, [Max] 조건을 만족하는 가측함수에 대해 퍼지선형성이 성립함을 보였다.

준노름 퍼지적분의 비 선형성 (Non-Linearity of the Seminormed Fuzzy Integral)

  • Kim, Mi-Hye
    • 한국콘텐츠학회논문지
    • /
    • 제2권2호
    • /
    • pp.91-97
    • /
    • 2002
  • Let (X, F, g) be a fuzzy measure space. Then for any h$\in$ $L^{0}$ (X) , a$\in$[0 , 1] , and $A\in$F ∫$_{A}$aㆍh($\chi$)┬g=aㆍ∫$_{A}$h($\chi$)┬g with the t-seminorm ┬(x, y)= xy. And we prove that the Seminormed fuzzy integral has some linearity properties only for {0,1}-classes of fuzzy measure as follow, For any f, h$\in$ $L^{0}$ ($\chi$), any a, b$\in$R+: af+bh$\in$ $L^{0}$ ($\chi$)⇒ ∫$_{A}$(af+bh)┬g=a∫$_{A}$f┬g+b∫$_{A}$h┬g; if and only if g is a probability measure fulfilling g(A) $\in${0, 1} for all $A\in$F.n$F.

  • PDF