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Non-Linearity of the Seminormed Fuzzy Integral
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Fuzzy £z 32t (X, F, g OlM 0} 1Al0j9 & Let (X, ¥, 2 be a fuzzy measure space. Then for
olof &4 a%t JI& &4 het 71X ZE Aofl Bsiod, - ay heLl%(X) . ac(0, 1], ad AcF

wE0| Su8| F v ZaPiY 2L

fa-mDTe=a- [ Hx)Te an' Kx)Tg=a: fAh(x)Tg

with the t-seminorm T (x, ¥) = xy. And we prove that the

0| MRIBIS HYC) EB E L fuzy B0 NHAS . . ol !
2= EQAE 70| (0115 Aziole 7;;& l:gogog seminomed fuzzy integral has some linearity properties
045194} only for {0,1}-classes of fuzzy measure as follow;

DI5}91C},

For any f» h ELO(x), a"V a, bER+ :
af+ bheL(x)=

fA(af+ bh) Tg=a Lng+bLth; af+ bhe L(x)=

fA(af+ bh) Tg=a Lng+bLth;

0| HE e &F IS It BE I WetAof of

off Oz 12i2t 2= &E £52 ZAocL if and only if g is a probability measure fulfiling g(A) < (0,
1) forall A= F.
l. Introduction dasses of fuzzy measwes. In this paper, we wil

generalize above-mentioned property.
Sugeno [8] defined a fuzzy measure as a measure

having the monotonicity instead of additivity. Since fuzzy Il. Preliminaries
measure does not satisfy countable addiive, it gained
recognition of its practical value. And a fuzzy integral We recall some notions and notations which wil be

which is an integral with respect to fuzzy measure is used in this paper, and investigate elementary properties
applied to make a synthetic evaluation about arbitrary of fuzzy measure and seminonmed fuzzy integral.

objects. The concept of the seminormed fuzzy integral
which is generalized fuzzy integral was proposed by
Suarez and Gill [6],[7]. In general the fuzzy integral is not
finear as consequence of the non-additivity of the fuzzy
measure. Klement and Ralescu [3] showed that the fuzzy
integral has some linearity properties only for small

Let X be a nonemply set, ¥ be a ¢-algebra of
subsets of X, and g:F —[0,1] be a set
function.
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A set funcion g:F — [0,1] is called a fuzzy
measure if
(1) g(@) = (0 (vanishing at @) ;
(2AeF.BeF, and AC B imply
g(A) C g(B) {monotonicity) ;

(3) A, CF, A, C A, C -, and QIA,,ey

mly lim &(A,) = g(\J A,)
(continuity from below) ;
4) A, CF, A DAD-, ad

4,7 imoy tim (4, = £( ) 4,)
(continuity from above).

We (X, F, g) call a fuzzy measure space if g is
a fuzzy measure on a measwrable space (X, F). The
main difference between fuzzy measures and dassical
measures is the lack of additivity of the former. However
each dassical measure is a fuzzy measure. Since the
fuzzy measure lose additivity in general, they appear
much looser than the dassical measures.

A real - valued function h: X—[0,1] is F-
measurable with respect to F and £ (measurable, for
short, if there is no confusion likely) if
{(h"{(B)=x|x)eBleF foranyBe Q,
where 2 is the ¢-algebra of Borel subsets of [(), 1] .

The definition of measurability of function is the same
as in the theory of Lebesgue integrals.

From now on, let us consider the set

LX) = {h: X—[0,1]| k is measurable with
respect o F and Q }, where 2 is the usud ¢
-algebra of Borel subsets of [0, 1].
he LX) , we wite
H,={x|h(x) > a}, where 2= [0,1].

For any given

let AeF, he LUX) . The fuzzy integral of
J1 with respect to g, which denote by fA hdg | is
defined by
fAh dg = sup ,epo.11 [@/\g(AMH,)].
When A= X , the fuzzy integral may be denote by
[ hdg. Sometimes the fuzy integral is also called
Sugeno's integral in the literature.

A t—seminorm is a funcion T:[0, 11%x[0,1]
—[0,1] which satisfies
(1) Foreach x<[0, 1],
T, D=TA,0=x ;
(2) For each x), x9, x3, 24<[0, 11, if x,<x;,

%p<xy, then T (xy,x2) < T(x3,x4).

Example 2.1. The following funclions are ¢ -
seminorms ;

(1) T(x, 3) = x/\y

(2 T(x, ») = 2y

@) T(x, » =0V (x+y—1)

Let T be a tseminom. For all e LX) , the
seminormed fuzzy integral of /2 over A e F to fuzzy

measure g is defined as

fAh Tg=sup 4eqo1) Tla, g(ANH,)]

In what follows, fX AT g wil be denote f KT g for

short. The seminormed fuzzy integral ocontains as a
particular case the fuzzy integral of Sugeno with
T(x, ) = x/\v.

Example 2.2. [An application of seminormed fuzzy integral]

Consider the empioyment problem of a company. A
company decides to recruit one new person. Assume that
the quality factors of the company considers are the
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computer quality, the ability in English, and the oral test.
We denote these factors by C, E, and T

respectively; hence we can set X= {C, E, T).
Assume further that following set functon g is

employed as an importance measure (a fuzzy measure) :

g(C)=0.7, 8(E)=0.1,8(7)=0,2(C,E)=0.9,
g(C,1)=0.8,gE,T)=0.3,8X)=1,g(¢)=0.

Suppose that two examine A and B attained points as
follows :

A(0)=0.9, A(E)=0.6, A(T)=0.1,
B(O)=0.4, B(E)=0.6, B(T)=0.6.

If we take T(x,y) = 0V(x+y—1). Then the
synthetic evaluations of two examine are calculated as
follows ;

EA: fA Tg
= sup 4e0 1 T (a, g(4,)
= Sup 4e0.0.41 [0 V (a4 g(X)—1)]
V'sup 401060 V(a+g(C,E)—1)]
\/sup 2<[0.6,1] [O\/(a+g(C)— 1)]

= 0.6.
And
EB= fB Tg
= 0.3.

Assume that an examine will be employed if he gets
more than {().5 points by seminormed fuzzy integrals.
Then we conclude that A is employed but B is not.

Remark. Seminormed fuzzy integrals (incuding fuzzy
integrals) can be applied to evaluate the synthetic values
of certain object as we considered in Example 2.1. For

each situation, one can choose a suitable #-seminomm.

let ¥ be a collection of subsets of X, and
Fie¥F, FoeF. A set funcion g is caled the
fuzzy additive on F if
& F\UF,) = g(F)Vg(F,).

We shall prove Fuzzy Beppo Levi's Theorem in which
we use the supremum  instead of addition in the
expression ;

Theorem 2.3. (Fuzzy Beppo Levi’'s Theorem).
let (X, F,g) be a fuzzy measure space. if g be
fuzzy addiive, and T be a continuous  #-seminorm, then
fA ( n\=/1h")Tg - n\=/1 fA ha T

for h,el%x), n=1,2,3, .

Proof.
generality.

tet h=V\ h,, ad H,={x|h(x) = a.

We may assume that A = X without loss of

Then H,= le, where 17, ={x| h,(x) = a}.

The fuzzy additivity of g and the continuity of T yield
the following

K¢ glhn)Tg = sup sero.ny T (@, g(H,)
= sup 4epoy T(a, & ’QIH"'L))
= sup oo, T (e, V gl HD)
=5 seron V, T (a, g(HY)

= ”\=/l SUD qero.y T (o, g(H%))

H
<3
—
R
_|
0Q
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lll. Fuzzy Linearity

We should note that, in general, the fuzzy integral lacks
some important properties Lebesgue’s integral possesses.

For instance Lebesgue's integral has linearity, but the
fuzzy integral does not. We can see this in the following
example.

Example 3.1. Let (X=[0,1], ¥, g) be the

Lebesgue measure space.
(1) f we take A(x)=x for any x=X, and

a=—% , then we have
[ ahdg = f—gdg

= sup 4epo,1; @/ X1 —-20)=—é

and

-1 L. 1_1
af hdg= [ xdg= - 5=
Consequently, we have

[ ahdg+a | nag.

1
2 ’

T(x,y) =0V (x+y—1), then we have

f ahTg = sup qeo. T(a, (1—420%)

@ Fwetake n(x)=Vx, a=

_ L
16
but
af hTg= % sup aeron T(a, 1—a?)
_1.1_1
2 4 8-
Hence

fath* af hTg.

Naturally, the linearity heavily depends on the
t-seminorm T . For example, we can show that a scalar

multiple of a fuzzy
T(x,y)=xy.

integral  behaves nicely  with

Theorem 3.2 Llet (X,F,g) be a fuzzy measure
space: Then for any ALY X), @=[0,1], and
AeF,

La' WMx)Tg= a- fAh(x)Tg

with the t-seminom T (x, y) = xy.

Proof. We denote
H,={x=[0,1]: k(x) = a}

= b e, )N[0,1],
H,={x<[0,1]1: a* i(x) = a}
= h % ,)N[0,1].
Then H,=H,, . Therefore, since
g(Hp =0 for x=(1,1/al
an- Wx)Tg=sup 4o T(a, g(H.(A))
= SUD qeqo) @+ SHLNA)
= SUp 4ero,11 @ &(H yal NA)
= SUp 4eqo,1) @ @/a- 8(H yo A)
=a-* Sup ,e(0,1] ala- g(Ha/amA)
=a-sup .o 8- g(H 4 A)
=a- sup gepo.) B &(H4A)
=a- sup geqo.1; T(B, g(H NA))
=q- fAh(x)Tg.
This finished the proof. o

Remark.3.3 Even if 4, keL%X) ad the
t-seminorm T satisfy the hypotheses in Theorem 3.2 ,

f(h-}-k)Tg#_ thg+fkTg

in general. For example, if A(x) = %x Kx)= ‘é‘
and g is the Lebesgue measure, then
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thg=%3—, fkTg=%.

but

f (h+k)Tg=%

In [3], Kement and Ralescu showed that the fuzzy
integral has some linearity properties only for small
dasses of fuzzy measures. Analogously, seminormed
fuzzy integrals satisty linearity properties only for small
classes of fuzzy measures. The argument in [3] works for
the following statement with litle adjustment.

Theorem 3.4 let (X, ¥, g be a fuzzy measure
space. Then the following statements are equivalent :

() Foray f, he L%(X), any a, bR, :
[af+bheL(X)=

[ arvemTe=af rrets[ rrel;

(@) g is a probability measure fulfilling
g(A)e{0,1} foral AcF.

Proof. (1)=(2)

We may assume that A= X without loss of
generality.

let H)={xe[0,1]l a (x)=a}. Suppose, to
get the oontradiction, there exists a number o,
0<ay<1, and aset A= F such that g(A) = a,.

Then we choose =L ag ,  and a=1+710.
Now we obtain
gHY)= 1 if a=0,
o if O(aé—%ao
0 if L+
1 zao<ar
and therefore

thg= TO.DVsup _ L T (a, )

=1/ ExE XA v YA
\/ sup L 1]‘I‘(ar,())
as(5a,
= T(_%ao,ao).
On the other hand,
gHH =1 if a=0,

ap if 0<a$% (1+ay),

0 if %(l-f-ao)(a,
from which
fah'rg

= T7(0,1)\Vsup T (@, ap)

e=(0. 50+ ap]

V' sup veda T (@0)

= T(3(1+ap, a.
Since

f ahTg= T(—%(l +ay), @) <ay<1,

af th=(1+—c%;)—) T(—%ao,ao)
= (1+—&10—)af0
=ay+1> 1,
we have
fath:#af hTg.
Hence g(A)={0,1) foral A=F.

In order to show that g is countably additive, we first
choose sets A, Be F suh that ANB= @ . Then
we have

g(AUB)=f R aupT g
= [ RaTet [ nyTe

=g(A) +g(B).
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And let {A,} be a sequence such that
Then

AICAIUA2CA1UA2UA3C"'
By the continuity from below of the fuzzy measure,

fJA) - time(\JAp
lim 3 g(A)

> 8(A)
Hence g is countably additive.

(2)=(1)
Fix heL%X) and a>( such that aheL%(X)
(for a=0 we obviously have

[ahTe =0 =af nTg) and cefine
Bo=sup{e<[0,1]] g(H ) =1}.
thg = Sup 4ero.y T (2, 8(H,))

= SUD ,4ef0,4y T (a,1)
= /30'

Hence
f ahkTg= supT(a,g(HX))

sup {a=[0,1]1 | g(H;)=1)

sup{—z -a<s[0,1] | g(H ,)=1}

a- sup{—g €[0,1] | g(H )=1}
= q- ﬁO

a- thg.

It remains to prove that

f(f+h)Tg=fng+thg.

et f+h =k, F,={x|Ax)=a},

Hy = {x|h(x)> g},
and

K,= {xl(f+h)x)= 7y}

We can chwose f he LX) such that
ke LUX).
Then foral @, B,y=[0,1]

F,NH; CK, C F,\UH,
Now put
fng=ao, thg=Bo, f (f+m)Teg=r,
and since g(A) € {0,1},
ay= sup{e<s[0,1]] g( F,) =1},
By=sup{B=[0, 1]l e(Hp =1},
7o=sup{r=[0, 1]l g(K,)=1}.
By the continuity from above of the fuzzy measure, we
get
&(F,)=g(Hp)=g(K,)=1.
Taking into account that g(A)=g(B)=1 implies
g(A(B)=1, we condude that g(K ,+4,)=1,
which implies a,+ £, < 7, -
Now assume 7,> ap+ 5, , thus
ro=(ayt+e)+(B+e
But this means,

1= g(Kyo)
< g({Fase YUHpg 4 D)

< g( Fao+£)+ g(Hﬁo+5)
=0.

for some &) 0.

This is a contradiction. Hence ay+ By = 75 -
Therefore

f (f+mTeg= fng+ f hTg.
The proof is complete. o
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