• Title/Summary/Keyword: fuzzy models

Search Result 658, Processing Time 0.027 seconds

A Note to the Stability of Fuzzy Closed-Loop Control Systems

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • Chen and Chen(FSS, 1993, 159-168) presented a reasonable analytical model of fuzzy closed-loop systems and proposed a method to analyze the stability of fuzzy control by the relational matrix of fuzzy system. Chen, Lu and Chen(IEEE Trans. Syst. Man Cybern., 1995, 881-888) formulated the sufficient and necessary conditions on stability of fuzzy closed-loop control systems. Gang and Chen(FSS, 1996, 27-34) deduced a linguistic relation model of a fuzzy closed loop control system from the linguistic models of the fuzzy controller and the controlled process and discussed the linguistic stability of fuzzy closed loop system by a linguistic relation matrix. In this paper, we study more on their models. Indeed, we prove the existence and uniqueness of equilibrium state $X_e$ in which fuzzy system is stable and give closed form of $X_e$. The same examples in Chen and Chen and Gang and Chen are treated to analyze the stability of fuzzy control systems.

  • PDF

Genetic-fuzzy approach to model concrete shrinkage

  • da Silva, Wilson Ricardo Leal;Stemberk, Petr
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.109-129
    • /
    • 2013
  • This work presents an approach to model concrete shrinkage. The goal is to permit the concrete industry's experts to develop independent prediction models based on a reduced number of experimental data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-making, thereby reducing data collection time. Such an approach was implemented for an experimental data set related to self-compacting concrete. The obtained prediction model was compared against published experimental data (not used in model development) and well-known shrinkage prediction models. The predicted results were verified by statistical analysis, which confirmed the reliability of the developed model. Although the range of application of the developed model is limited, the genetic-fuzzy approach introduced in this work proved suitable for adjusting the prediction model once additional training data are provided. This can be highly inviting for the concrete industry's experts, since they would be able to fine-tune their models depending on the boundary conditions of their production processes.

A Study on Fuzzy Ranking Model based on User Preference (사용자 선호도 기반의 퍼지 랭킹모델에 관한 연구)

  • Kim Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.94-95
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

  • PDF

A Study on Fuzzy Ranking Model based on User Preference

  • Kim Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.326-331
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

An evaluation of CTDs risk factors of upper extremity using fuzzy linear regression (퍼지선형회귀를 이용한 상지부위의 CTDs 위험요인 평가)

  • 이동춘;부진후
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.55
    • /
    • pp.33-42
    • /
    • 2000
  • It is difficult to estimate the effective factors upon Cumulative Trauma Disorders in real workplace because those are developed by combination of various risk factors for time. The purpose of this paper was to evaluate relative level of CTDs risk factors such as task-related factors, anthropometric factors, joint deviation factors and personal factors using fuzzy linear regression models. And the models are built corresponding to each category with the survey data from telephone operators. The coefficient of fuzzy models are described as the relative level of variable to present risk factors upon CTDs.

  • PDF

An empirical comparison of static fuzzy relational model identification algorithms

  • Bae, Sang-Wook;Lee, Kee-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.146-151
    • /
    • 1994
  • An empirical comparison of static fuzzy relational models which are identified with different fuzzy implication operators and inferred by different composition operators is made in case that all the information is represented by the fuzzy discretization. Four performance measures (integral of mean squared error, maximal error, fuzzy equality index and mean lack of sharpness) are adopted to evaluate and compare the quality of the fuzzy relational models both at the numerical level and logical level. As the results, the fuzzy implication operators useful in various fuzzy modeling problems are discussed and it is empirically shown that the selection of data pairs is another important factor for identifying the fuzzy model with high quality.

  • PDF

A practical neuro-fuzzy model for estimating modulus of elasticity of concrete

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.249-265
    • /
    • 2014
  • The mechanical characteristics of materials are very essential in structural analysis for the accuracy of structural calculations. The estimation modulus of elasticity of concrete ($E_c$), one of the most important mechanical characteristics, is a very complex area in terms of analytical models. Many attempts have been made to model the modulus of elasticity through the use of experimental data. In this study, the neuro-fuzzy (NF) technique was investigated in estimating modulus of elasticity of concrete and a new simple NF model by implementing a different NF system approach was proposed. A large experimental database was used during the development stage. Then, NF model results were compared with various experimental data and results from several models available in related research literature. Several statistic measuring parameters were used to evaluate the performance of the NF model comparing to other models. Consequently, it has been observed that NF technique can be successfully used in estimating modulus of elasticity of concrete. It was also discovered that NF model results correlated strongly with experimental data and indicated more reliable outcomes in comparison to the other models.

Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM (TPM에서 퍼지 OEE 모형의 개발 및 분석)

  • Choi, Sungwoon
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

Optimization of Fuzzy Relational Models

  • Pedrycz, W.;de Oliveira, J. Valente
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1187-1190
    • /
    • 1993
  • The problem of the optimization of fuzzy relational models for dealing with (non-fuzzy) numerical data is investigated. In this context, interfaces optimization assumes particular importance, becoming a determinant factor in what concerns the overall model performance. Considering this, several scenarios for building fuzzy relational models are presented. These are: (i) optimizing I/O interfaces in advance (independently from the linguistic part of the model); (ii) optimizing I/O interfaces in advance and allowing that their optimized parameters may change during the learning of the linguistic part of the model; (iii) build simultaneously both interfaces and the linguistic subsystem; and (iv) build simultaneously both linguistic subsystem and interfaces, now subject to semantic integrity constraints. As linguistic subsystems, both a basic type and an extended versions of fuzzy relation equations are exploited in each one of these scenarios. A comparative analysis of the differ nt approaches is summarized.

  • PDF

An Introduction to Fuzzy Measures and Fuzzy Integrals (퍼지측도 및 퍼지적분)

  • 권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.35-41
    • /
    • 1996
  • This paper presents a short introduction to fuzzy measures and fuzzy integrals for providing an useful understanding of articles related on fuzzy measure theory and its applications. A brief overview of the basic concepts of systems, models, uncertainty, fuzzy measures and fuzzy integrals is provided. And terminology and notation frequently used in the discussion on the topic are introduced.

  • PDF