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Abstract: The problem of the optimization of fuzzy
relational models for dealing with (non-fuzzy) numer-
ical data is investigated. In this context, interfaces
optimization assumes particular importance, becom-
ing a determinant factor in what concerns the overall
model performance. Considering this, several scenar-
ios for building fuzzy relational models are presented.
These are: (i) optimizing I/O interfaces in advance
(independently from the linguistic part of the model);
(ii) optimizing I/O interfaces in advance and allowing
that their optimized parameters may change during
the learning of the linguistic part of the model; (iii)
build simultaneously both interfaces and the linguistic
subsystem; and (iv) build simultaneously both linguis-
tic subsystem and interfaces, now subject to semantic
integrity constraints. As linguistic subsystems, both a
basic type and an extended versions of fuzzy relation
equations are exploited in each one of these scenarios.
A comparative analysis of the different approaches is

summarized.

1 Introduction

In constructing fuzzy relational models, the problem of build-
ing 1/0 interfaces becomes a critical issue. On one hand the

meaning of the linguistic terms of these interfaces should be
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semantically valid, on the other hand the performance of 1/0
interfaces determines the overall system performance. This is
of particular interest when the models have to be applied in
closed-loop structures. With this respect one can look at fuzzy
controllers as a particular class of fuzzy models heavily utiliz-
ing the above mentioned interfaces. If no interface optimiza-
tion ever takes place some drawbacks are supposed to happen.
For instance, it could happen that the model simply will not be
able to match effectively the observed data. Even if the linguis-
tic subsystem (partially) compensates the conversion errors, it
could be “pushed” in such way (e.g. over trained) that it may
loose some of its desirable characteristics such as its general-
ization capabilities. Thus some type of optimization becomes
inevitable. In what concerns the linguistic subsystem of the
fuzzy model, a single level relational structure under t-s com-
position is first exploited. Then a structure representing an

extended version of fuzzy relation equation is discussed.

2 Fuzzy relational models

Fuzzy relational models for handling (non-fuzzy) numerical data
are viewed here as three block systems, consisting of (i) an input
or numerical/linguistic (N/L) interface, that translates numer-
ical data into linguistic data (fuzzy sets); (ii) a linguistic (re-
lational) subsystem, whose both input and output are linguis-
tic terms, and where the linguistic relationships are captured;
and (iii) an output or linguistic/numerical (L/N) interface, that

converts linguistic information back to numerical data.
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2.1 I/O interfaces

A N/L interface can be built based on the fuzzy discretization
concépt. This concept enables one to address .the problem the
N/L interface construction as the problem of generating c refer-
ence fuzzy sets [1]. In this work, reference fuzzy sets are defined
by two-parameters normal, and convex membership functions.

As L/N interface, the center of gravity method is adopted.
2.2 Linguistic system

Several fuzzy relational structures have been proposed lately [3,
4, 5, 7]. For the sake of simplicity we will start with single level
structures. A single level relational structure can be viewed
as a collection of units processing linguistic terms (fuzzy sets)
defined in respective input and output spaces — see Fig. 1.
The structure encapsulates relationships between inputs and
outputs at a level of reference fuzzy sets. Let X and Y be
collections of activations of the reference fuzzy sets produced by
the N/L interface, such as X = {zy...z,] and Y = [y1 .. .ym].

The output of an generic unit, say y;, can be given by:
y; = Tio (=i s rij) ey

where T' and s stand for t-norm and s-norm respectively. The
matrix formed by all r;; can also be understood as a fuzzy re-
lation. Extended versions of such structures as those proposed

in {7] are also considered.

Figure 1: Unit of single level relational structure.

3 Optimization scenarios

Four different scenarios for optimizing fuzzy relational models

are analyzed:

A: Optimizing I/O interfaces in advance and separately from
the linguistic subsystem. That is regarding the interfaces
as standalone subsystems providing a (nearly) zero con-

version error;

B: Optimizing I/O interfaces allowing however that their op-
timized parameters may change during the learning pro-

cess of the linguistic system;

C: Optimizing simultaneously both the I/O interfaces and
the linguistic subsystem. This scenario correspond to the
usual optimization process of fuzzy systems reported in

the literature;

D: Optimizing simultaneously both the linguistic subsystem

and the interfaces subject to some integrity constraints.

The required interface optimization for scenarios A and B is
provided by the PAFIO algorithm [8]. This algorithm optimizes
the parameters of membership functions such as an equivalence
of information processed by a series of N/L and L/N interfaces
is achieved. More generally, the construction of the model is
based on an adaptive version of supervised learning where both
the fuzzy relations as well as the reference fuzzy sets are opti-
mized. In general, the learning process is driven by a standard
performance index, the MSE criterion:
N
(

Q=3 (t;-w)

I=

—

where t; is the j-th target output of the model and y; is its

actual value.

4 Numerical considerations

Let us discuss the optimization of a fuzzy model using learn-
ing data coming from the following static non-linearity ¢(z) =
1—“13—_-;, where z is a non-uniformly distributed sequence with 50
points [6]. Furthermore, it is assumed that both the input and
the output linguistic terms are of interest. Notice that in [6]
only the input linguistic terms were assumed as interesting. In
the following, three linguistic terms at both interfaces modelled
by Gaussian membership functions are used. Refer to 6] for

a discussion on the impact of different shapes of membership
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functions. Here we are concerned with both the performance of
the optimized models, and the semantic meaning of their inter-
faces. The cptimization efficiency is also to be considered. For
assessing these features, a model is built according to each sce-
nario, and then validated by a testing data set with 121 points.
From Fig. 2 one can visualize a perfect cross validation perfor-

mance for all models but for the model derived with scenario

A.
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Figure 2: Cross validation for systems obtained from different
scenarios: solid line — target; dashed line - model output
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Figure 3: Resulting linguistic terms: scenarios A and B.
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Figure 4: Resulting linguistic terms: scenarios C and D.

Looking for the resulting interfaces (Figs. 3 and 4) one can
see that scenarios A and D produce linguistic terms semanticly
meaningful, that can be easily termed small, medium, and large,
for instance. By the opposite, those input linguistic terms gen-
erated by scenarios B and C (they produce nearly the same
results) hold a meaning that is difficult to figure out. This
has also its implications from a information processing point
of view: some points of the UoD (e.g. z = 2) have a higher
value of possibility (they are more “important™) than others
(e.g. = = —2) without any other reason than to compensate

the lack of “capacity” of the linguistic subsystem.

This lack of “capacity” is also the reason for the poor perfor-
mance of the model derived from A. To overcome this drawback
we should select from the family of optimal interfaces one that
also optimizes the overall system performance, or what is the
same, optimize the model subject to the constraint of optimal
interfaces. This is what scenario D is aiming at. Notice that
the interfaces optimized by scenarios A and D are both opti-
mal. Obviously, if we use as linguistic subsystem an extended
relational structure such as those proposed in [7], where there is
more degrees of freedom, a fuzzy model derived from scenario
In such extended

A can perform successfully ~ see Fig. 5.

structures the output of a generic unit, say y;, is given by:

ny
n=1"

L= nn p . . . . .
y;=T . 'Tj,,=1(171,713 e ST ST i) (2)
From an optimization efliciency perspective, scenario B is the
most computationally demanding, while scenario A is the most

efficient. Scenarios C and D require nearly the same computa-
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Figure 5: Performance of scenario A for an extended fuzzy
relational structure: solid line - target; dashed line - model
output
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tion effort. [7] J. Valente de Oliveira, “Neuron inspired learning rules for
fuzzy relational structures”, Fuzzy Sets and Systems (in

5 Conclusions press).

The optimization of fuzzy relation models for dealing with nu- (8] J. Valente de Oliveira, ‘fOp f)ptimal fuzzy systems I/0 in-

” N
merical data, where the meaning of its linguistic terms is rele- terfaces”, Proc. of Second IEEE International Conference

vant, was summarized. Four different optimization strategies, on Fuzzy Systems. 3. Francisco, 1993.
including the conventional one (scenario C), were considered.
It was argued that the optimization simultaneous of both I/O
interfaces and the linguistic subsystem with no integrity con-
straints can generate meaningless linguistic terms. Therefore,
for small “capacity” linguistic subsystems, scenario D should

be used while for larger linguistic subsystems scenario A can

be advantageous over scenario D in terms of efficiency.

Finally it should be stressed that the use of fuzzy relational
models allow us to generalize this study to those fuzzy systems

embedded in that class.
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