An empirical comparison of static fuzzy relational model identification algorithms

  • Published : 1994.10.01

Abstract

An empirical comparison of static fuzzy relational models which are identified with different fuzzy implication operators and inferred by different composition operators is made in case that all the information is represented by the fuzzy discretization. Four performance measures (integral of mean squared error, maximal error, fuzzy equality index and mean lack of sharpness) are adopted to evaluate and compare the quality of the fuzzy relational models both at the numerical level and logical level. As the results, the fuzzy implication operators useful in various fuzzy modeling problems are discussed and it is empirically shown that the selection of data pairs is another important factor for identifying the fuzzy model with high quality.

Keywords