• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.028 seconds

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot (이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용)

  • Kim, Dong-Won;Kang, Tae-Gu;Hwang, Sang-Hyun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

Collaborative CRM using Statistical Learning Theory and Bayesian Fuzzy Clustering

  • Jun, Sung-Hae
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.197-211
    • /
    • 2004
  • According to the increase of internet application, the marketing process as well as the research and survey, the education process, and administration of government are very depended on web bases. All kinds of goods and sales which are traded on the internet shopping malls are extremely increased. So, the necessity of automatically intelligent information system is shown, this system manages web site connected users for effective marketing. For the recommendation system which can offer a fit information from numerous web contents to user, we propose an automatic recommendation system which furnish necessary information to connected web user using statistical learning theory and bayesian fuzzy clustering. This system is called collaborative CRM in this paper. The performance of proposed system is compared with the other methods using real data of the existent shopping mall site. This paper shows that the predictive accuracy of the proposed system is improved by comparison with others.

Adaptation of Clustering Method to FNN for Performance Improvement (FNN 성능개선을 위한 클러스터링기법의 적용)

  • 최재호;박춘성;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • In this paper, we proposed effective modeling method to nonlinear complex system. Fuzzy Neural Network(FNN) was used as basic model. FNN was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, we used FNN which was proposed by Yamakawa. The FNN used Simple Inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. This structure has better property than other structure at learning speed and convergence ability. But it has difficulty at definition of membership function. We used Hard c-Mean method to overcome this difficulty. To evaluate proposed method. We applied the proposed method to waste water treatment process. We obtained better performance than conventional model.

  • PDF

Control of the robot manipulators using fuzzy-neural network (퍼지 신경망을 이용한 로보트 매니퓰레이터 제어)

  • 김성현;김용호;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.436-440
    • /
    • 1992
  • As an approach to design the intelligent controller, this paper proposes a new FNN(Fuzzy Neural Network) control method using the hybrid combination of fuzzy logic control and neural network. The proposed FNN controller has two important capabilities, namely, adaptation and learning. These functions are performed by the following process. Firstly, identification of the parameters and estimation of the states for the unknown plant are achieved by the MNN(Model Neural Network) which is continuously trained on-line. And secondly, the learning is performed by FNN controller. The error back propagation algorithm is adopted as a learning technique. The effectiveness of the proposed method will be demonstrated by computer simulation of a two d.o.f. robot manipulator.

  • PDF

Neuro-Fuzzy Modeling based on Self-Organizing Clustering (자기구성 클러스터링 기반 뉴로-퍼지 모델링)

  • Kim Sung-Suk;Ryu Jeong-Woong;Kim Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.688-694
    • /
    • 2005
  • In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

An Enhanced Fuzzy Single Layer Perceptron With Linear Activation Function (선형 활성화 함수를 이용한 개선된 퍼지 단층 퍼셉트론)

  • Park, Choong-Shik;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1387-1393
    • /
    • 2007
  • Even if the linearly separable patterns can be classified by the conventional single layer perceptron, the non-linear problems such as XOR can not be classified by it. A fuzzy single layer perceptron can solve the conventional XOR problems by applying fuzzy membership functions. However, in the fuzzy single layer perception, there are a couple disadvantages which are a decision boundary is sometimes vibrating and a convergence may be extremely lowered according to the scopes of the initial values and learning rates. In this paper, for these reasons, we proposed an enhanced fuzzy single layer perceptron algorithm that can prevent from vibration the decision boundary by introducing a bias term and can also reduce the learn time by applying the modified delta rule which include the learning rates and the momentum concept and applying the new linear activation function. Consequently, the simulation results of the XOR and pattern classification problems presented that the proposed method provided the shorter learning time and better convergence than the conventional fuzzy single layer perceptron.

A Fuzzy BOXES Scheme for the Cartpole Control

  • Kwon, Sung-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1710-1715
    • /
    • 2005
  • Two fuzzy controllers are coordinated to control a cartpole such that the pole is balanced as well as the cart is brought back to the track origin. The coordination is due to the BOXES scheme that is established through the evaluation of the outcomes of the control action by one of the fuzzy controllers. It is found that the control scheme is good at selecting proper fuzzy controller so that the pole is balanced fast while the cart moves back to the track origin steadily.

  • PDF