• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.023 seconds

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

Control of Crawling Robot using Actor-Critic Fuzzy Reinforcement Learning (액터-크리틱 퍼지 강화학습을 이용한 기는 로봇의 제어)

  • Moon, Young-Joon;Lee, Jae-Hoon;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.519-524
    • /
    • 2009
  • Recently, reinforcement learning methods have drawn much interests in the area of machine learning. Dominant approaches in researches for the reinforcement learning include the value-function approach, the policy search approach, and the actor-critic approach, among which pertinent to this paper are algorithms studied for problems with continuous states and continuous actions along the line of the actor-critic strategy. In particular, this paper focuses on presenting a method combining the so-called ACFRL(actor-critic fuzzy reinforcement learning), which is an actor-critic type reinforcement learning based on fuzzy theory, together with the RLS-NAC which is based on the RLS filters and natural actor-critic methods. The presented method is applied to a control problem for crawling robots, and some results are reported from comparison of learning performance.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

A Study on the New Learning Method to Improve Noise Tolerance in Fuzzy ART (퍼지 ART에서 잡음 여유도를 개선하기 위한 새로운 학습방법의 연구)

  • 이창주;이상윤;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1358-1363
    • /
    • 1995
  • This paper presents a new learning method for a noise tolerant Fuzzy ART. In the conventional Fuzzy ART, the top-down and bottom-up weight vectors have the same value. They are updated by a fuzzy AND operation between the input vector and the current value of the top-down or bottom- up weight vectors. However, it can not prevent the abrupt change of the weight vector and can not achieve good performance for a noisy input vector. To solve the problems, we updated using the weighted sum of the input vector and the current value of the top-down vector. To achieve stability, the bottom-up weight vector is updated using the fuzzy AND operation between the newly learned top-down vector and the current value of the bottom-up vector. Computer simulations show that the proposed method prominently resolves the category proliferation problem without increasing the training epoch for stabilization in noisy environments.

  • PDF

Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle (궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

New Fuzzy Modeling Method by Fuzzy Equalization (퍼지 균등화에 의한 새로운 퍼지 모델링 방법)

  • Kwak, K.C.;Shin, D.C.;Song, C.K.;Kim, J.S.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.957-959
    • /
    • 1999
  • In this paper we proposed a new fuzzy modeling method by Fuzzy Equalization(FE) based on probability theory. FE concerns a process of building membership function without learning using back-propagation of neural network. Therefore, we compare the proposed method with Adaptive Network-based Inference System based on hybrid learning. Finally, we will show better performance and its usefulness for a new fuzzy modeling to automobile mpg prediction.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF