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1. INTRODUCTION 
 
Motion control of mobile robots is a typical nonlinear tracking 
control issue and has been discussed with different control 
schemes such as PID, GPC, sliding mode, predictive control 
etc[1]-[3]. Intelligent control techniques, based on neural 
networks and fuzzy logic, have also been developed for path 
tracking control of mobile robots[4][5]. While conventional 
neural networks have good ability of self-learning, they also 
have some limitations such as slow convergence, the difficulty 
in reaching the global minima in the parameter space, and 
sometimes even instability as well. In the case of fuzzy logic, 
it is a human-imitating logic, but lacks the ability of 
self-learning and self-tuning. Therefore, in the research area of 
intelligent control, fuzzy neural networks(FNNs) are devised 
to overcome these limitations and to combine the advantages 
of both neural networks and fuzzy logic[6][7]. This provides a 
strong motivation for using FNNs in the modeling and control 
of nonlinear systems. And the wavelet fuzzy model(WFM) has 
the advantage of wavelet transform by constituting the fuzzy 
basis function(FBF) and the conclusion part to equalize the 
linear combination of FBF with the linear combination of 
wavelet functions. The conventional fuzzy model can not give 
the satisfactory result for the transient signal. On the contrary, 
in the case of WFM, the accurate fuzzy model can be obtained 
because the energy compaction by the unconditional basis and 
the description of a transient signal by wavelet basis functions 
are distinguished[8]. Therefore, we design a FNN structure 
based on wavelet, which merges these advantages of neural 
network, fuzzy model and wavelet. The basic idea of wavelet 
based fuzzy neural network(WFNN) is to realize the process 
of fuzzy reasoning of WFM by the structure of a neural 
network and to make the parameters of fuzzy reasoning be 
expressed by the connection weights of a neural network. And 
an approach that uses adaptive learning rates is driven via a 
Lyapunov stability analysis to guarantee the fast convergence. 
In this paper, we design the direct adaptive control system 
using the WFNN structure. Through computer simulations, we 
demonstrate the effectiveness and feasibility of the proposed 
control method and compare the control performance of the 
WFNN controller with those of the FNN, the WFM and the 
wavelet neural network(WNN) controllers.  
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In our network structure[10], the network output, , is as 
follows: 
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where,  is the network input, and the network weight set is 
which is tuned to minimize the model errors 

via the gradient descent(GD) method. In order to apply the GD 
method, the squared error function is defined as follows: 
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where,  are the output values of a WFNN 
and  are the desired values.  
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Using the GD method, the weight set,  can 
be tuned as follows:  
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where,  and 
subscript 
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p  denotes each network weight. And η  is called 

the learning rate. The gradient set of WFNN output  with 
respect to weight set is calculated as in Eq. (4), and each 
gradient of WFNN output  with respect to each weight is 
presented as in Eq. (4) to Eq. (7):    
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3. PATH TRACKING CONTROL FOR MOBILE 

ROBOT USING THE WFNN 
 
3.1 Dynamic model of mobile robot 
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Fig. 1 Mobile robot model and world coordinate 

 
The mobile robot used in this paper is composed of two 
driving wheels and four casters. And it is fully described by a 
three dimensional vector of generalized coordinates 
constituted by the coordinates of the midpoint between the two 

driving wheels, and by the orientation angle with respect to a 
fixed frame as shown in Fig. 1. The equation for motion 
dynamics is as follows:  
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where,  and  are linear velocity and angular velocity, 
respectively, and   and are two incremental 
distances of two driving wheels and distance between these 
two wheels, respectively. In this model, the control input 
vector is represented by 

dδ δθ
,rd ld b
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3.2 The direct adaptive control system using the WFNN 
In our control system, the direct adaptive control system is 
designed using the WFNN structure. The purpose of our 
control system is to minimize the state error  

between the reference trajectory  and the 
controlled trajectory 

),,( θeee yxE

),,( rrrr yx θY
),,( θyxY  of a mobile robot. For this 

purpose, the parameters of WFNN are trained via the GD 
method. The overall control system is shown in Fig. 2. WFNN 
controller calculates the control input  by 
training the inverse dynamics of plant iteratively. But, the 
updating of parameters of WFNN through the variation rate 

 in the GD method cannot be calculated directly. So, 
we train the parameters of a WFNN through the 
transformation of the output error of plant.  
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Fig. 2 Direct adaptive control system 
 
In this structure, inputs are composed of errors between the 
reference trajectory and the controlled trajectory, and outputs 
are control variables. Each control variable is as follows: 

,

,

1

3

11

3

1

1

3

11

3

1

∑∑∑∑

∑∑∑∑

====

====

Φ+=+=

Φ+=+=

R

j
jj

n
nn

R

j
j

n
nn

R

j
jjd

n
nnd

R

j
jd

n
nndd

Beayeau

Beayeau

θθθθθ

             (9) 

where,  

∑ ∏

∏

= =

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=Φ
R

j
j

n nk

nkn

n nk

nkn

nk

nkn

jcjjc

n

n

n

n

n

n

d
me

d
me

d
me

B

1

3

1

2

3

1

2

2
1exp

2
1exp

ω  and  

}.,{ θdc =   

2255



ICCAS2005                                         June 2-5, KINTEX, Gyeonggi-Do, Korea       
 

 
raining Procedure :  

g the parameters of WFNN is to 

 
t function so as to train a 

T
The purpose of trainin
minimize the state errors ),,( θeee yxE . To do this, we present 
the following training procedure: 
· Definition of  the following cos
WFNN controller based on direct adaptive control technique: 

))()()((1 222 θθ −+−+−= rrr yyxxC .               (10)
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· Calculation of the partial derivative of the cost function with 
respect to the parameter set of a WFNN controller: 
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The partial derivative of the control input  with respect to 
the parameters of a WFNN controller can be calculated by 
using Eqs. (13) and (14). 

U

· Updating of the parameters of WFNN via the following 
iterative GD method:  
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where, η  is the learning rate of a WFNN. 
From Eqs (12) and (13), each gradient of the controller output 

 with respect to each weight is presented as follows:  cu
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and the detailed description is shown in Eq. (7).  
 
4. STABILITY OF THE WFNN CONTROLLER 

 
In the update rule of Eq. (3), selection of the values for the 
learning rate η  has the significant effect on the control 
performance. Generally, if η  is too big, the system is 

unstable. And for the small η , although the convergence is 
guaranteed, the control speed  very slow. Therefore, in order 
to train the WFNN effectively, adaptive learning rates, which 
guarantee the fast convergence and stability, must be derived. 
In this subsection, the specific learning rates for the type of 
network weights are derived based on the convergence 
analysis of a discrete type Lyapunov function.  
Theorem 1: Let cp,

is

η  be the learning rate for the output 

nd

 are defined  

cu  

influenced by weig ector pγ  of the WFNN. )(, kcpG  a  ht v

)(max,, kcpG  as
)(
)(

k
ku

p

c

γ∂
)(, kcpG =  and 

∂

)(max)( ,max,, kk cpkcp GG ≡ , respectively, and ⋅  is the 

Euclidean norm in . Henℜ re, subscript p  and  denote 
each weight and outpu espectively. Then the convergence is 
guaranteed if cp,

 c
t, r

η  is chosen as follows: 

( )2
,

2
,

2
,

2
max,,

, )(
20

ccycxcp
cp JJJk θ

η
++

<<
G

.              (14) 

Proof: 
nalysis, a discrete type Lyapunov function is selected In this a

as   

)(
2
1)(kV = kT EE ,                                (15) 

where,  is 
and 

Lyapu  

)(kE the difference between the desired state 
)(krY  the output state )(kY . Then, the change of 
nov function is obtained by

 

))()1()()1()()1((
2
1

)()1()(

222222 kekekekekeke

kVkVkV

yyxx θθ −++−++−+=

−+=∆
,(16) 

where,  )(
)(
)()()1()( k

k
kekekeke p

T

p

x
xxx γ

γ
∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

≈−+=∆ ,  

)(
)(
)(

)( k
k
ke

ke p

T

p

y
y γ

γ
∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
≈∆ , )(

)(
)()( k

k
keke p

T

p
γ

γ
∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

≈∆ θ
θ .  

From Eqs. (27), (28) and (29), is defined as )(kpγ∆  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

−=∆ )( Ckγ η

)(
)(

)(
)()(

)(
)()(

)(
)()(

)(

,

,

k
ku

ku
kke

ku
kyke

ku
kxke

k

p

c

cc
y

c
xcp

p
cpp

γ

γ

θη θ

, (17) 

and the error difference can be represented by  
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hw ere, )(key∆  and have the same description. Let 
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subscript 
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Remark 1: The convergence is guaranteed as long as Eq. (19) 
is satisfied, i.e.: 
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The maximum learning rate, which guarantees the fast 
convergence, can be obtained as 
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which is the half of the upper limit.  
 
Theorem 2: Let },,,{ ,,,,, cdcmccacp ηηηηη ω=  be the learning 
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Proof : (a) 
Let us define  as )(max,, kcaG )(max)( ,max,, kk cakca GG ≡ . 
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where  is the -th input value of WFNN and  is the 
number of input. The rest of proof is shown in the Appendix 
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■ Q.E.D. 
 
Remark 2: The maximum learning rates of WFNN, which 
guarantee the fast convergence, are as shown in Eq. (24).  
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5. SIMULATIONS 

 
In this section, we present simulation results to validate the 
control performance of the proposed WFNN controller for the 
path tracking of mobile robots. Generally, the characteristic of 
network structure as a controller is very susceptible to several 
simulation environments such as the initial value of network 
weight, the sampling time, the learning rate, etc. In this 
computer simulation, the initial values of network weight are 
randomly determined and the sampling time of control 
procedure is 0.01sec. In the update rule of GD method, 
selection of the values for the learning rate η  has the 
significant effect on the control performance. So, in our 
control system, the learning rates are adaptively determined to 
rapidly minimize the state errors. The inputs of controller are 
three state errors, . The simulation environments 
and results are as shown in Table 1. This simulation considers 
the tracking of a trajectory generated by the following 
displacements:  

),,( θeee yxE
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Table 1. The simulation environments and results 
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Fig. 3 Controlled path using a WFNN controller 
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Fig. 4 Path tracking errors 
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Fig. 5 Adaptive learning rates for the WFNN weights 

 
Figure 3 shows the reference path and controlled path of a 
mobile robot using a WFNN controller. And Figs. 4 and 5 
show the control errors for path tracking of a mobile robot and 
the adaptive learning rates for the fast convergence and  

 

 

MSE  MF number 
of each input 

Wavelet 
(Rule Num.) 

Parameter Learning rate 
state x [ ] cm state [ ] y cm state [ ] θ o

Our WFNN 3 27 78 Adaptively (initial value : 0.1) 0.0002695   0.0003747 0.000053 
Our WFNN 3 27 78 Experimentally fixed : 0.08 0.003814 0.004329 0.002589 
WFM[8] 16 16 80 Experimentally fixed : 0.011 0.05734 0.07925 0.3254 
FNN[7] 4 128 152 Experimentally fixed : 0.044 0.4186 0.9527 1.08903 
WNN[9] * 11 94 Experimentally fixed : 0.214 0.009312 0.007823 0.05426 

stability, respectively. As a result, if the control errors are 
changed then the learning rates are changed too for the fast 
convergence and accuracy. In our simulations, we use the 
mean squared error(MSE) as the tracking performance for 
comparison of performance with the FNN, the WFM and the 
WNN controllers. The simulation results are as shown in 
Table 1. From these figures and Table 1, we confirm that the 
WFNN controller works better than other controllers that use 
the FNN, the WFM and the WNN respectively, although the 
tracking errors are occurred in case that the direction is 
changed. In this comparison, the network structure such as the 
number of membership function, the number of rule and the 
learning rate, is experimentally determined via many 
simulations.  
 

6. CONCLUSION 
 
In this paper, we have proposed a WFNN based direct 
adaptive control scheme for the solution of the tracking 
problem of mobile robots. In our control system, we have 
designed a FNN structure based on wavelet that merges the 
advantages of neural network, fuzzy model and wavelet 
transform as a controller. The control signals were directly 
obtained to minimize the difference between the reference 
track and the pose of a mobile robot via the GD method. In 
addition, an approach that has used adaptive learning rates for 
the training of WFNN controller was driven via a Lyapunov 
stability analysis to guarantee the fast convergence, that is, 
learning rates were adaptively determined to rapidly minimize 
the state errors of a mobile robot. Finally, to evaluate the 
performance of the proposed direct adaptive control system 
using WFNN, we have compared the control results of the 
WFNN controller with those of the FNN, the WNN and the 
WFM controllers. As a result, we have confirmed that our 
WFNN controller works better than the FNN, the WNN and 
the WFM controllers, although the tracking errors are occurred 
in case that the direction is changed.  
 

APPENDIX 
 

Proof (b) of Eq. (23): 
Let us define  as )(max,, kcωG )(max)( ,max,, kk ckc ωω GG ≡ .  

And then from Eq. (13) and the definition of Theorem 1, the 
gradient of WFNN output  with respect to weight cu jcω  

can be written as 
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maximum condition as follows: 
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Hence, from Theorem 1 and Eq. (A1), (b) of Theorem 2 
follows ■ Q.E.D.  
 
Proof (c) and (d) of Eq. (23): 
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While the weight a  and  have an effect on only one 
connected output, the weight  and  have an effect on 
all output. Therefore, for the convergence according to the 
effect of the weight  and d , the additional expansion is 
needed. Let us define  as 
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Therefore, if the maximum condition Eqs. (A2) and (A3) are 
substituted by Eqs. (A4) and (A5), respectively, from Theorem 
1, Eqs. (A4) and (A5), (c) and (d) of Theorem 2 follow ■ Q.E.D.   
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