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Abstract: In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the
solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of
neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy
reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed
by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the
difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an
approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to
guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile
robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare
the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.
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1. INTRODUCTION

Motion control of mobile robots is a typical nonlinear tracking
control issue and has been discussed with different control
schemes such as PID, GPC, sliding mode, predictive control
etc[1]-[3]. Intelligent control techniques, based on neural
networks and fuzzy logic, have also been developed for path
tracking control of mobile robots[4][5]. While conventional
neural networks have good ability of self-learning, they also
have some limitations such as slow convergence, the difficulty
in reaching the global minima in the parameter space, and
sometimes even instability as well. In the case of fuzzy logic,
it is a human-imitating logic, but lacks the ability of
self-learning and self-tuning. Therefore, in the research area of
intelligent control, fuzzy neural networks(FNNs) are devised
to overcome these limitations and to combine the advantages
of both neural networks and fuzzy logic[6][7]. This provides a
strong motivation for using FNNs in the modeling and control
of nonlinear systems. And the wavelet fuzzy model( WFM) has
the advantage of wavelet transform by constituting the fuzzy
basis function(FBF) and the conclusion part to equalize the
linear combination of FBF with the linear combination of
wavelet functions. The conventional fuzzy model can not give
the satisfactory result for the transient signal. On the contrary,
in the case of WFM, the accurate fuzzy model can be obtained
because the energy compaction by the unconditional basis and
the description of a transient signal by wavelet basis functions
are distinguished[8]. Therefore, we design a FNN structure
based on wavelet, which merges these advantages of neural
network, fuzzy model and wavelet. The basic idea of wavelet
based fuzzy neural network(WFNN) is to realize the process
of fuzzy reasoning of WFM by the structure of a neural
network and to make the parameters of fuzzy reasoning be
expressed by the connection weights of a neural network. And
an approach that uses adaptive learning rates is driven via a
Lyapunov stability analysis to guarantee the fast convergence.
In this paper, we design the direct adaptive control system
using the WFNN structure. Through computer simulations, we
demonstrate the effectiveness and feasibility of the proposed
control method and compare the control performance of the
WFNN controller with those of the FNN, the WFM and the
wavelet neural network(WNN) controllers.
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2. WAVELET BASED FUZZY NEURAL
NETWORK

In our network structure[10], the network output, p,, is as
follows:

R N R N R
Ye = Zancxn +Zyjc = Zam‘xn +ZBJ'C(DI > (1)
n=l1 j=1 n=l1 j=1

where, x, is the network input, and the network weight set is
v ={a, ®, d, m}, which is tuned to minimize the model errors
via the gradient descent(GD) method. In order to apply the GD
method, the squared error function is defined as follows:

J=%«yrl—ﬁ1)2+(yr2—&2>2+-~+<y,c—mz, @

where, f(z[j/l P2+ Y] are the output values of a WFNN
and Y, =[y,; ¥,» ==-¥,c] are the desired values.

Using the GD method, the weight set, y={a, ,d, m}, can
be tuned as follows:

oJ
v,,(k+1)="/,,(k)+Avp(k)=v,,(k)—nﬁyp(k)
o] oY @
:’Yp(k)_na_?ayp(k):y‘y(k)+77.E.Dp7
Where, E:[(yrl_ﬁl)(yrZ_)GZ)'“(er_j}C)] and

subscript p denotes each network weight. And 7 is called

the learning rate. The gradient set of WFNN output Y with
respect to weight set is calculated as in Eq. (4), and each

gradient of WFNN output y with respect to each weight is
presented as in Eq. (4) to Eq. (7):

. oY Y oY oY oY

v, = = s (4)
oy, (k) | da(k) dw(k) om(k) od(k)
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3. PATH TRACKING CONTROL FOR MOBILE
ROBOT USING THE WFNN

3.1 Dynamic model of mobile robot

Fig. 1 Mobile robot model and world coordinate

The mobile robot used in this paper is composed of two
driving wheels and four casters. And it is fully described by a
three dimensional vector of generalized coordinates
constituted by the coordinates of the midpoint between the two
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driving wheels, and by the orientation angle with respect to a
fixed frame as shown in Fig. 1. The equation for motion
dynamics is as follows:

odcos(6, + %)
Xk+1 Xk 50
Yea [=|Ye |+| odysin(G, +Tk) > (®)
O Ok 56,

where, 6d and 06 are linear velocity and angular velocity,
respectively, and d,, d,

distances of two driving wheels and distance between these
two wheels, respectively. In this model, the control input

vector is represented by U= [u d ug]T = [5d 58]T .

and b are two incremental

3.2 The direct adaptive control system using the WFNN

In our control system, the direct adaptive control system is
designed using the WFNN structure. The purpose of our
control system is to minimize the state error E(e,,e,,e,)

between the reference trajectory Y, (x,,y,,6,) and the

controlled trajectory Y(x,y,0) of a mobile robot. For this
purpose, the parameters of WFNN are trained via the GD
method. The overall control system is shown in Fig. 2. WFNN
controller calculates the control input U:[ud ug]T by
training the inverse dynamics of plant iteratively. But, the
updating of parameters of WFNN through the variation rate
J(7,Y) in the GD method cannot be calculated directly. So,

we train the parameters of a WFNN through the
transformation of the output error of plant.

5

state error
Efee,.e,)

Updating the parameters
of WENN
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v
H
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The Direct Adaptive
Controller Based on
WFNN
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Gradient Descent
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and
Lyapunov Stability  [%
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Fig. 2 Direct adaptive control system

In this structure, inputs are composed of errors between the
reference trajectory and the controlled trajectory, and outputs
are control variables. Each control variable is as follows:
3 R
2 a4, +ZBjd(Dj’

=i

n=1

3 R
ug = a,.e, +Z)’A/d =
n=1 Jj=1

3 R 3 R (9)
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Training Procedure :
The purpose of training the parameters of WFNN is to
minimize the state errors E(ex,ey,ey) . To do this, we present

the following training procedure:
- Definition of the following cost function so as to train a
WENN controller based on direct adaptive control technique:

Cz%((xr ~0)? 4 (=)’ 46, -0)). (10)

- Calculation of the partial derivative of the cost function with
respect to the parameter set of a WFNN controller:

oC Ox Oy 00
——=—e, T ——¢, ———¢——
o, Op 00, O,
ox oU oy ou 00 oU
=—e, —e, —e
ou oy, ou oy, ou oy,
ouU
=-EJ(u)—,
o,
(11)
where, e, =x,-x, €e,=y,-y e=0-0 and

J(u) = % is the feedforward Jacobian of a mobile robot and

is as follows:

cos(6, + %) —%sin(&k + %)
J(u)=| sin(6, +& %cos(ﬁk +§—§k (12)
- 0 ! ~16 =01

The partial derivative of the control input U with respect to
the parameters of a WFNN controller can be calculated by
using Egs. (13) and (14).

- Updating of the parameters of WEFNN via the following
iterative GD method:

v,(k+) =7y, (k)+Ay, (k)

12
=1, @i

P

oc
=y (k)-n—
¥, (k) 775])

where, 7 is the learning rate of a WFNN.
From Eqgs (12) and (13), each gradient of the controller output

u, with respect to each weight is presented as follows:
a R

auc —e 8uL, _ jz::lyj(‘ _ q)j

=e,, = =—
oa,, dw;. 0w, (k) &
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)

4. STABILITY OF THE WFNN CONTROLLER

and the detailed description is shown in Eq. (7).

In the update rule of Eq. (3), selection of the values for the
learning rate 7 has the significant effect on the control

performance. Generally, if 7 is too big, the system is

2256

unstable. And for the small 7, although the convergence is

guaranteed, the control speed is very slow. Therefore, in order
to train the WFNN effectively, adaptive learning rates, which
guarantee the fast convergence and stability, must be derived.
In this subsection, the specific learning rates for the type of
network weights are derived based on the convergence
analysis of a discrete type Lyapunov function.

Theorem 1: Let 7, . be the learning rate for the output u,

influenced by weight vector v, of the WFNN. G, (k) and

G, max (k) are defined as G, (k) :_SZ;((?) and
Gp,c,max (k) =max;, ||Gp’c (k)" , respectively, and " . " is the

Euclidean norm in R". Here, subscript p and ¢ denote

each weight and output, respectively. Then the convergence is

guaranteed if 77, . is chosen as follows:
2

W2 +I5 475, )

0<77N<G2 (14)

p,c,max

Proof:
In this analysis, a discrete type Lyapunov function is selected
as

V (k) :%ETE(k) , (15)

where, E(k) is the difference between the desired state
Y, (k) and the output state Y(k). Then, the change of
Lyapunov function is obtained by

AV (k) =V (k+1)-V (k)
(16)

%(ei(kwt1)7eX2(k)+e§(k+1)7e§(k)+e§(k+1)fe§(k))’
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T
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From Egs. (27), (28) and (29), Ay (k) is defined as
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and the error difference can be represented by
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= 77,,,@[61 (k) +e, (k) o (K)

Oe, (k)
oy, (k)
au (k)

T
:{amk)}

ou, (k)
o1, ()

-
Aeﬂ‘ﬁ{ } Ay, (k)

(18)
L 00(k) Fm(‘(k)}

ax(k) j
" ou (k) ) o, (k)

au (k)

ox(k)
ou, (k)

k)
Ou, (k)

+ e, (k)

77,,.4[‘?‘ (k) ek

’ axk) () (k)

2.\ Y 2,

Ay (k)
ou, (k)

80(k)
ou (k) |

= pe

+e, (k) +e5(k)

where, Ae, (k) and Ae,(k) have the same description. Let
J

s,c

be a element of the feedforward Jacobian for the state of

a mobile robot with respect to the control input, where,
subscript s and ¢ denote one state among three state of a
mobile robot and the control input u,, respectively. From Egs.

(16) - (18), AV (k) can be represented as
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AV (k) =V (k +1) -V (k)

%[(ex(k) +Ae (k) — el (k) + (e, (k) + Ae, (k)" — &5 (k) + (e (k) + Ay (K))* = E0)
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ou, (k)
G, (=" "% and G, (®)=max, |G, )]
oy, (k)
respectively.
Since
Py =1,.|G,,. 0 { SellG e O U, 2, +J§,f)}
1 77,,( 2 o G 0 2, 2, +2,) |,(19)
=n,.]G,. 0 | 1- -
G, max (K)
27,6, | { S5 D2+ +J§,(.)}>0
we obtain
2
0<n,.< = QED. (20)

G 2+ T2 42,

Remark 1: The convergence is guaranteed as long as Eq. (19)
is satisfied, i.e.:

1
np,c|:1 _577

The maximum learning rate, which guarantees the fast

2 ol a2 vz, )} >0, @D

convergence can be obtained as
2 2 2
p( max(k)(']x,c +Jy,c +J,9,(,)=1 , 1.€
1
np,c,max = . (22)

2 2 2
p C,max (k)(‘]x,c + Jy,c + ‘]H,c )
which is the half of the upper limit.

Theorem 2: Let 77, . =47, 0 Mpes Mmes Tae) e the learning
rate set for the weight set, y={a, ®,d, m}, of WFNN, and
G, (k) defined the
{6u(,(k) ou, (k) ou,(k) ou,(k)

da(k) * do(k)’ om(k)’ ad(k)

with respect to the weight set. Then the convergence is
guaranteed if 77, is chosen as

is as gradient set,

}, of WENN output u,
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2

(@ 0<n,, < 5 s
Moo 242 +05,)
2
(b) 0<n,, < 3 ,
Rlo, | 2 +02 +03,) (23)
() O0<m,,. < 2 3
Vel [ | 2T 2 e,
mldy m"DEN‘ i
@ 0<n,, < Q 2 7
02, .| |pEN|+VH )|
\/EH‘a),uz ‘M“—‘ (Jf‘(wa.(,Jri‘C
max mn‘DEN‘ N
Proof : (a)
Let us define G, (k) as Ga’c’max(k)Emaxk"Ga’c(k)".
Then from Eq. (20), we obtain
2
0<m,.< And from the

a ,c,max (k)(‘]zz,c + ‘]5,0 + ‘];,c)

definition of Theorem 1, the maximum condition can be
obtained as

0
o . 0 -, “%H o 1< ..
Thus Gfl c.max o ?
where e, is the n -th input value of WFNN and N is the

number of input. The rest of proof is shown in the Appendix
= Q.E.D.

Remark 2: The maximum learning rates of WEFNN, which

guarantee the fast convergence, are as shown in Eq. (24).
1

Ma.comax = Nle, im (j\z_[ + J&,L ‘*'J(g,( )’
1
Mo emax = g ’
o) @
1
‘DEN‘+r Ly
o [d I
o
o 1
d,c,max — ’
(108, (PEn A (2,42, 42
Jclu ‘ max ‘k— Jret et o

min
max

5. SIMULATIONS

In this section, we present simulation results to validate the
control performance of the proposed WFNN controller for the
path tracking of mobile robots. Generally, the characteristic of
network structure as a controller is very susceptible to several
simulation environments such as the initial value of network
weight, the sampling time, the learning rate, etc. In this
computer simulation, the initial values of network weight are
randomly determined and the sampling time of control
procedure is 0.01sec. In the update rule of GD method,
selection of the values for the learning rate 7 has the
significant effect on the control performance. So, in our
control system, the learning rates are adaptively determined to
rapidly minimize the state errors. The inputs of controller are
three state errors, E(e,, y,eg). The simulation environments
and results are as shown in Table 1. This simulation considers

the tracking of a trajectory generated by the following
displacements:
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Table 1. The simulation environments and results

MF  number | Wavelet Parameter | Learning rate s

of each input | (Rule Num.) & statex [cm] | state y [em] | state @ [o]
Our WFNN 3 27 78 Adaptively (initial value : 0.1) | 0.0002695 0.0003747 0.000053
Our WFNN 3 27 78 Experimentally fixed : 0.08 0.003814 0.004329 0.002589
WEFM[8] 16 16 80 Experimentally fixed : 0.011 0.05734 0.07925 0.3254
FNN[7] 4 128 152 Experimentally fixed : 0.044 0.4186 0.9527 1.08903
WNNI[9] * 11 94 Experimentally fixed : 0.214 0.009312 0.007823 0.05426

Linear velocity &d =20cm/sec, Angular velocity 60 =0°/sec (0<1<3) stability, respectively. As a result, if the control errors are

Linear velocity 6d =30cm/sec, Angular velocity 60 =59.3°/sec (5<t<10)
Linear velocity 6d =30cm/sec, Angular velocity 60 =-59.3°/sec  (10<t<15)
Linear velocity od =20cm/sec, Angular velocity 66 =0°/sec (15<t<20)

Tracking result for mobile robot using WFNN controller

¥ position(cm)
T
~
L

X position(cm)

Fig. 3 Controlled path using a WFNN controller

ermor x(em)
e 2
L L

ermor B(angle)

-3

Time(sec)

Fig. 4 Path tracking errors

Adaptive leaming rates
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1
Time step
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P AN [y NI ) PN (Y | NI Y | AR
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wll |

v \ . \ ! | | ! ’ ’
o z 0 © 0 70 2 i G T8
Time stop

Fig. 5 Adaptive learning rates for the WFNN weights

Figure 3 shows the reference path and controlled path of a
mobile robot using a WFNN controller. And Figs. 4 and 5
show the control errors for path tracking of a mobile robot and
the adaptive learning rates for the fast convergence and
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changed then the learning rates are changed too for the fast
convergence and accuracy. In our simulations, we use the
mean squared error(MSE) as the tracking performance for
comparison of performance with the FNN, the WFM and the
WNN controllers. The simulation results are as shown in
Table 1. From these figures and Table 1, we confirm that the
WENN controller works better than other controllers that use
the FNN, the WFM and the WNN respectively, although the
tracking errors are occurred in case that the direction is
changed. In this comparison, the network structure such as the
number of membership function, the number of rule and the
learning rate, is experimentally determined via many
simulations.

6. CONCLUSION

In this paper, we have proposed a WFNN based direct
adaptive control scheme for the solution of the tracking
problem of mobile robots. In our control system, we have
designed a FNN structure based on wavelet that merges the
advantages of neural network, fuzzy model and wavelet
transform as a controller. The control signals were directly
obtained to minimize the difference between the reference
track and the pose of a mobile robot via the GD method. In
addition, an approach that has used adaptive learning rates for
the training of WFNN controller was driven via a Lyapunov
stability analysis to guarantee the fast convergence, that is,
learning rates were adaptively determined to rapidly minimize
the state errors of a mobile robot. Finally, to evaluate the
performance of the proposed direct adaptive control system
using WFNN, we have compared the control results of the
WEFNN controller with those of the FNN, the WNN and the
WFEM controllers. As a result, we have confirmed that our
WEFNN controller works better than the FNN, the WNN and
the WFM controllers, although the tracking errors are occurred
in case that the direction is changed.

APPENDIX

Proof (b) of Eq. (23):
Let us define G

®,c,max

(k) a5 Gy ey () =max, |G, (k)]
And then from Eq. (13) and the definition of Theorem 1, the
gradient of WFNN output u, with respect to weight @,

. 8uc, (I)j
can be written as G, (k) o B E then
@, (k) S,
FE
G () =L Oy | < |22 ‘ogf‘s‘ij‘s"oB".
Zﬂj Zﬂ_/
=1 =1
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Gm d ,c,max (k) = l’Ilan ||an,d,c—out (k)(']ic + Ji,c + J;,c] . Here
. H;
R a > 2 is the maximum condition for each output u,
Since <1 and < «/E G? dc—out (k) th dition fe h output
-Z:: jZ:l,u 7 according to the effect of the weight {m,d} and
Gi d.c.max (k) 18 the maximum condition for output U . Then

we obtain |G, (k)] <vR ||oB||SR‘ij

and have the
X
maximum condition as follows:

(AD)

(U C,max

max

Hence, from Theorem 1 and Eq. (Al), (b) of Theorem 2
follows m QE.D.

Proof (c) and (d) of Eq. (23):

Let us define

Gm,d,cfout (k)
G, ieonk)= maxk"Gm’d’c (k)" And then from Eq. (13)

and the definition of Theorem 1, the gradient of WFNN output
u, with respect to weight m , and d, , can be written as

6B D
mdc(k)_zamk n’dk n(k)

as

4, [NUMOndy,) _ DENGm,p.di,, )NUM
= o _ .
Pl DEN DEN?
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; 1
Pin(z)0) (Z,,, l)exp _EZ <1 and
exp —lzz. =—z, exp| ——z2, |<1,
2 jn jn jn
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G (b < i NUM (my, ) i DEN(m, ,)NUM
B0, ————+|>| »,, ———
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DEN|+
< \/ﬁ|a)jc &
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16 0 < w0, YH ) | Mo, DEN G N
< o, ———+|>| @, ”
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|0§ o |max (|DEN| +H )
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Therefore, we obtain each maximum condition as follows:

2
|DEN| +JH

<JHlo,

max

|DENT’

2

G o (0 = Hlor . (A2)
max b - | D EN|
. |0A o QDEN|+J§) ’
G2, () =Hlow, | s ; (A3)
max |dknn _|peN]

While the weight a and ® have an effect on only one
connected output, the weight m and d have an effect on
all output. Therefore, for the convergence according to the
effect of the weight m and d, the additional expansion is

needed. Let us define G k) as

mdamax(

2259

we obtam
m dc max (k) < '\/_|G ,d c—out (k) ‘]2 +J2 +‘]§,c lmax ’

thus
2
G2, (0 =[]0 | ‘DEW‘/EZ (2ea2 e - AD
™\, , \DEN\
. max
‘oj“ BQDEN\+f) . (A5)

G2 e () =AC|

] (va(, G,

H|
@
/€l max

Therefore, if the maximum condition Eqs. (A2) and (A3) are
substituted by Egs. (A4) and (A5), respectively, from Theorem
1, Egs. (A4) and (A5), (c) and (d) of Theorem 2 follow = QE.D.

‘dk .| |DENJ’

min

max
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