• Title/Summary/Keyword: fuzzy dynamics

Search Result 308, Processing Time 0.025 seconds

Tracking Control for Mobile Robot Based on Fuzzy Systems (퍼지 시스템을 이용한 이동로봇의 궤적제어)

  • 박재훼;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.466-472
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. Since the mobile robot has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile robot. One of the well-known tracking controllers for the mobile robot is the back-stepping controller. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot. The conventional back-stepping controller is affected by the derived velocity reference by a kinematic controller. To improve the performance of the conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. The new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. Simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

Fuzzy Control of Underwater Robotic Vehicles (무인 잠수정의 퍼지제어)

  • Lee, W.;Kang, G.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

Fuzzy Control Using A Modified Fuzzy Modelling (개선된 퍼지 모형화 기법에 의한 퍼지 제어)

  • Lee, Sang-Yong;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.349-352
    • /
    • 1991
  • Fuzzy modelling is a useful method when the variation of plant dynamics is large. In the fuzzy modelling by parameter identification, a new method is proposed in the part of premise parameters identification and in expanding MISO system into MIMO system. Using the proposed method, a fuzzy model of the drum boiler of the thermal power plant can be derived. In addition, feedwater control of the drum by fuzzy controller using the fuzzy model, is simulated.

  • PDF

Design of fuzzy algorithms for DC motor speed control (DC 모터 속도제어를 위한 퍼지 알고리즘 설계)

  • 최종수;김성중;최한수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.676-680
    • /
    • 1991
  • This paper proposes fuzzy control algorithms for a DC moter speed control. The proposed algorithms are constructed by the fuzzy controller and the fuzzy compensator. The fuzzy compensator used to overcome rapidly the effects caused by the disturbance and is mounted outside of the closed loop of the fuzzy controller. The fuzzy control rules are established from human operator experience and basic engineering knowledge about the process dynamics. Simulation results show that the proposed algorithms compensate for parameter variation and disturbance.

  • PDF

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.

High efficiency tracking system design of photovoltaic using fuzzy control (퍼지제어를 적용한 태양광 발전의 고효율 추적시스템 설계)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yon;Jung, Byung-Jin;Chung, Dong-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up. nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF