• Title/Summary/Keyword: fuzzy constraint

Search Result 82, Processing Time 0.019 seconds

A study on fuzzy constraint line clustering for optical flow estimation (Optical Flow 추정을 위한 Fuzzy constraint Line Clustering에 관한 연구)

  • 김현주;강해석;이상홍;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.150-158
    • /
    • 1994
  • In this paepr, Fuzzy Constraint Line Clustering (FCLC) method for optical flow estimation is proposed. FCLC represents the spatical and temporal gradients as fuzzy sets. Based on these sets, several constraint lines with different membership values are generated for the poxed whose velocity is to be estimated. We describe the process for obtaining the membership values of the spatial and temporal gradients and that of the corresponding constraint line. We also show the process for deciding the tightest cluster of point formalated by intersection between constraint lines. For the synthetic and real images, the results of FCLC are compared with of CLC.

  • PDF

Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets (구간값 퍼지집합, Intuitionistic 퍼지집합, Bipolar-valued 퍼지집합의 비교)

  • Lee, Keon-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.125-129
    • /
    • 2004
  • There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic fuzzy sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.

Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets (구간값 퍼지집합, Intuitionistic 퍼지집합, Bipolar-valued 퍼지집합의 비교)

  • 이건명
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.12-15
    • /
    • 2001
  • There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.

  • PDF

Fuzzy Control as Self-Organizing Constraint-Oriented Problem Solving

  • Katai, Osamu;Ida, Masaaki;Sawaragi, Tetsuo;Shimamoto, Kiminori;Iwai, Sosuke
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.887-890
    • /
    • 1993
  • By introducing the notion of constraint-oriented fuzzy inference, we will show that it provides us ways of fuzzy control methods that has abilities of adaptation, learning and self-organization. The basic supporting techniques behind these abilities are“hard”processing by Artificial Intelligence or traditional computational framework and“soft”processing by Neural Network or Genetic Algorithm techniques. The reason that these techniques can be incorporated to fuzzy control systems is that the notion of“constraint”itself has two fundamental properties, that is, the“modularity”property due to its declarativeness and the“logicality”property due to its two-valuedness. From the former property, the modularity property, decomposing and integrating constraints can be done easily and efficiently, which enables us to carry out the above“soft”processing. From the latter property, the logicality property, Qualitative Reasoning and Instance Generalization by Symbolic Reasoning an be carried out, thus enabling the“hard”processing.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF

Guaranteed Cost and $H_{\infty}$ Filtering for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 보장비용 및 $H_{\infty}$ 필터링)

  • 이갑래;조희수;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presents a method for designing guaranteed cost fuzzy filter with a desired H$_{\infty}$ disturbance rejection constraint of delayed fuzzy dynamic systems. This method not only guarantees an induced L$_2$ norm bound constraint on disturbance attenuation, but also minimizes an upper bound on a linear quadratic performance measure. A sufficient condition for the existence of guaranteed cost fuzzy filter with H$_{\infty}$ constraint is then presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

Polynomial Fuzzy Modelling and Trajectory Tracking Control of Wheeled Mobile Robots with Input Constraint (입력제한을 고려한 이동로봇의 다항 퍼지모델링 및 궤적추적제어)

  • Kim, Cheol-Joong;Chwa, Dong-Kyoung;Oh, Seong-Keun;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1827-1833
    • /
    • 2009
  • This paper deals with the trajectory tracking control of wheeled mobile robots with input constraint. The proposed method converts the trajectory tracking problem to the system stability problem using the control inputs composed of feedforward and feedback terms, and then, by using Taylor series, nonlinear terms in origin system are transformed into polynomial equations. The composed system model can make it possible to obtain the control inputs using numerical tool named as SOSTOOL. From the simulation results, the mobile robot can track the reference trajectory well and can have faster convergence rate of the trajectory errors than the existing nonlinear control method. By using the proposed method, we can easily obtain the control input for nonlinear systems with input constraint.

On Auxiliary Linear Programming Problems for Fuzzy Goal Programming (퍼지목표계획(目標計劃) 모형(模型)의 보조문제화(補助問題化))

  • Park, Sang-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.101-106
    • /
    • 1992
  • In this paper fuzzy goal programming problems with fuzzy constraints and fuzzy coefficients in both matrix and right hand side of the constraints set are considered. Because of fuzzy coefficients in both members of each constraint ranking methods for fuzzy numbers are considered. An additive model to solve fuzzy goal programming problems is formulated. The diversity of each methods provides a lot of different models of auxiliary linear programming problems from which fuzzy solutions to the fuzzy goal programming problem can be obtained.

  • PDF