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Abstract

This paper presents a method for designing guaranteed cost fuzzy filter with a desired H,

disturbance rejection constraint of delayed fuzzy dynamic systems. This method not only guarantees
an induced L, norm bound constraint on disturbance attenuation, but also minimizes an upper bound

on a linear quadratic performance measure. A sufficient condition for the existence of guaranteed
cost fuzzy filter with H, constraint is then presented in terms of linear matrix inequalities(LMIs).

A simulation example is given to illustrate the design procedures and performances of the proposed

methods.
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I .Introduction

In the past few years, there has been rapidly

growing interest in fuzzy control of nonlinear
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of Electrical Engineering,

guaranteed cost filtering, H, filtering, delayed fuzzy systems

systems, and there have been many successful
Recently, stability  analysis
systematic design are among the most important

issues for fuzzy control systems and there have been
[1~6)

applications. and

significant research efforts on these issues

These methods simple
straightforward. The nonlinear system is represented
by a Takagi-Sugeno(T-S) fuzzy model. And then,
the control design is carried out on the basis of the
fuzzy model via the so-called parallel distributed
compensation(PDC) scheme. Tanaka et al. [4][5]
presented stability analysis for a class of fuzzy
dynamic systems. Ma et al [6] presented the
analysis and design of the fuzzy controller and fuzzy

are conceptually and
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observer on the basis of T-S fuzzy model using
separation property. Chen(9] and lee et al(l0]
presented the design method of fuzzy He controller

to satisfy an He norm bound constraint on
disturbance attenuation. Chen et al [12] also

considered guaranteed-cost control with a desired

H., disturbance rejection constraint.

Since time delay is frequently a source of

instability and encountered in various engineering

systems, the He control
systems has received considerable attention over the

problem for delayed

last few decades. In fuzzy control systems, Cac et
al.[13] presented stahility analysis and synthesis of
delayed fuzzy dynamic systems. Lee et al. [14] also

presented output feedback fuzzy He of
delayed fuzzy dynamic systems.

control

For practical control systems, a fuzzy control with
guaranteed cost control performance under a desired

H. disturbance
appealing for nonlinear systems.

rejection  constraint  is  more

This paper presents a method for designing
guaranteed cost fuzzy filter with a desired Ho
disturbance rejection constraint of delayed fuzzy
dynamic systems. This methods not only guarantees
an induced L2 norm bound constraint on disturbance
attenuation, but also an upper bound on a linear
quadratic performance measure. A sufficient condition
for the existence of guaranteed cost fuzzy filter with
He constraint is then presented in terms of linear
matrix inequalities(LMIs). A simulation example is

given to illustrate the design procedures and

performances of the proposed methods.

O. Problem formulation

The continuous fuzzy dynamic model, proposed by
Takagi and Sugeno, is described by fuzzy IF-THEN
rules which represented local

relations of nonlinear system. Consider a nonlinear

linear input—output

system with time-varying delayed states that can be
described by the following T-S fuzzy model with

£ A08B SCHh # 2% 11

time-varying delayed states:

Plant Rulei:
IF 2,(f) is M, and - and z,(f) is M,
THEN x(d=A,x(H+ Azx(t—d(D)+ Buw(f)
W)= C;x(8) + Cyx(t— dy(H) + Du(H),

e (D= Cx(9,
e ()= Coix(P),
W)=,

i=1,2,,7r

I
te[— max (d,(0), d»(0)),0]

where M is the fuzzy set, x(de R”* is the state

vector, ¢(He R™ is the continuous initial value
function, w(f)e R?eL,(0,T) is the square-
integrable  noise  signal, WHe R” is the

measurement, €. (DER™, and en()ER" is the
signal to be estimated, » is the number of IF-THEN
rules, 21~ 2, are some measurable system variables,
the premise variables, and all matrices are

with

ie,
constant

d(9,i=1,2, are the time-varying delays with
following assumptions:

matrices appropriate  dimensions,

0<d(H <o, d;(H<p<1, i=1,2. (2)

Given a pair of ((#),u(#)) by using a center
average defuzzifer, product inference, and singleton
fuzzifier, the dynamic fuzzy model (1) can be

expressed by the following global model:

x(H = Az {A x(D+ A x(t—dy (D) + B;w(D}

A = b zD){Cx(D+ Cyx(t—dy( D)+ D;w(H}
D = S nlHC D

e.(t) =

P
P2
2,
g‘,lh,(t) Coix(D

x(8) = ¢, te[— max(d,(0), dx(0)),0] 3)

where
wlz(d) = ;Ile #A2; (D)

h(HD) = wl2(D)] Zw =)

2 = [2() 2,(0 = 2,]7
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where M ;(z(#) is the grade of membership of

z{(#) in M;. I is assumed that

wi(z(8) =20, i=1,2,-,

Swlz(0) > 0

@

for all ¢ Then we can obtain the following

conditions:

hz‘(z(t)) > 0, i=1,2,

D) = 1

¥

®)

for all £ As a fuzzy H, filter of the fuzzy system
(1), we consider the following structure:

Filtering Rule 1:
IF 2,(#) is M; and - and z,(#) is M,
THEN %(H=Fx(H+ G;3(D, i=1,2,,r
e, (=C,x(d
en ()= Coyz ()
6)
where the matrix F, and G; are to be determined.
The final output of this fuzzy filter is

() = Z‘:.lhi(z(t)) {F,2(D+Gy(D), %(0)=0
%)

From (3) and (7), we obtain the following estimation

error system

t(= A0+ A, (2x(t—di (D) ®
+ A, (D x(t— dy()) + B(2)wld)

= [HDT fH117,
tel— max (d, (0), 4,(0)), 0]

2, (1) = T,

2. () = TL(ALD

with the following notations

A(z) = Zlghi(z(t))h,v(z(t)) A ©

EEEPECEREES

29 FHEFE 5t

NE,

Ho

T.(2)= glh,-(Z(t)) T.
T (2)= zlhi(z(t)) Tooi

2,(2) = lg'lh,(z(m A,

4

21 h{z(D) h{2(H) By

i=

A, ()= Z’

1

B(z) = ?;

-

4

h{z() k(D) By

1;=1

~

where ¢ =[(x(®—%(NT 2T W],
2(H=e(H—2(p,

F,‘ A,’“GiCj“F,'
], 10)

Aii:
0
- G,‘ Cd]‘

N

T
Aul”,

A;

AZ:}": [

A, =[A4%
B;=[(B,—GD)" B[,
T=[Cs 01,

Tooi=[Cu; 01.

In general, the guaranteed cost filtering is more
appealing to achieve a desired filtering performance.
Therefore, we consider the following cost function

without considering w(£).

Ii=[ el o (an

Since H, control is control design to efficiently

eliminate the effect of w(#, for given y we define

H,, control performance of the system (10) as the

quantity
Tt = [N 2 Db 7L [ o D11Pdt+ 2(0) "Qux()

* zélfd([))x(r) "Qx(v)dr] (12)

for all TO0 and all weL,[0 71, where || -]
denotes the Euclidean norm. The weighting matrix
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Q,7=0,1,2,in (12) are measure of the initial state
uncertainty at <0 relative to the uncertainty in
w(d. A large value of @, indicates that the state

at <0 is very close to zero.

This paper addresses designing fuzzy filter (7) for
the system (3) such that the estimation error system
is globally exponentially stable and cost function (11)

is satisfied with a desired Ho constraint (12).

M. Fuzzy filter design

Define a Lyapunov functional
__ T 2 t T E
Ve D=0 P+ 3 [ (0 SalDdr, (13

where P>(0 and S;>0. Then there exist positive

scalars 8, and 8y such that
sl < vig, o < 8lldi®. If there exists scalar
>0 such that V(¢ H< —ealldl, then the

unforced system of (8) is globally exponentially

[15]

stable . From assumption (2)

vigd< £T(HPLD+ T (HPLY

+ 30 (DTS — x(t=d D) (1= B)S, (£~ d (D))
A} a4

Lemma 1. Consider the system (3) with assumption
(2), and let R>0,7i=0,1,2 be a given initial
state weighting matrix and >0 a given scalar. If
there exist matrices P> 0, $;>0 and S,;> 0,and

positive scalar « satisfying the following inequalities

2,0, i=1,2,,r (15)
Q.+ 82,40, iKir, (16)
(1, IIPLI, 117 = Q<0 am

S.—72Q,;< 0, i=1,2 (18)

then the corresponding estimation error system is

globally exponentially stable and achieves H.,

control performance for all we L,[0, T]1. In here

=+
Bl

£ 40 % SCE B 2H .
Q,=
A, P+PA,+5S+S,+ T, CT., PA,; PA, PB,
* -3 0 0
* * -5 0
% * * = A
(19

where * represents the elements below the main

diagonal of a symmetric matrix and

0 0 00
S = s Se= (20)
0 SI+SZ 0 a[
S, = (1-8)S; =1,2.
Proof Consider V,(¢, D< —aldl? and the
following condition
T = V(& D+ 2" () 2()— Y () w(H<0.
(21)
From closed loop system (8)
14§)]
;o x(t—d))
JLD < 2 X hiky
1= x(t*dz)
w(d)
A, P+PA,+35+S, PA, PZA, PBJ|
* -3 0 *(t—d,)
* x -3, 0 xt—dy)
* * * -7 u(d)
+ 3B kAL T8O T D). (22)
By considering the following condition
HOLTOED) ;:jlh,h,-( T i )T T witH
< 3 a0 T Tt (23)
(22) can be presented as follows
“«o &«
, 27 x(t—d)) x(t—d))
7y < ki i .
=17i=1 4 x(t— dz) x(t_ dz) (24)
w(t) w(
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Zy] hih2,<0 is equivalent to

17=1

The inequality 2;

2 D) A0 Lyt 3 hi2(D) B (2(0) (2, + 2,)50.

(25)

Thus if (15 (16) satisfied, then
V, (&0 < dixl?and (21) is satisfied. From (21)

and are

[ recoae— 2 [[llwoli?ar < £70) Peco)

2
* zZI fd,«))xr( 1) Sx(r)dr %)

because V(¢ )>0. It follows from initial condition
(8) that

LT LTI T
S zonar= 7L [ liPdt+ 57 @z,
2
+ 2 [ AT < £ PUO)

T
a0" (DS x(D)dr

2
- 72x€Q0x0+ ’Zlf
_ 72 1221 fd,(O)XT( 0@ x(1)dr< xOT
W, LI 177

* tzj:l j—ﬂd,(o)xT(T) [S:=7Qlx(D)dr. @7

Thus if (15)-(18) are satisfied, H. control
performance (12) is satisfied [0

Lemma 2 Consider the system (3) with

assumption (2). If there exist matrices P> 0, S;> 0,

S;> 0, R>0,R,>0 and  positive  scalar o
satisfying the following inequalities

v.<0, =1,2,,7 (28)

T+ 0,0, iidr, (29)

—o+ 10 PE0)<O (30

—RANTS,N,<0, i=1,2 &)

then the corresponding estimation error system
achieves guaranteed cost function 6 and the
guaranteed cost bound & is o+ #(R) + i Ry).

A7) i) w4 o

H. HEg ZEEE K
In here
A,/P+PA+5+ T,’C, PA, PA,
v,= * -3 0 (32)
* * -5,
0
MDD = NNT, i=1,2 (33)
where
0 0
S = . S = (1-8)S; i=1,2, (34)
0 S.+S,
and * represents the elements below the main
diagonal of a symmetric matrix.
Proof : From Lyapunov functional (13), we obtain
1
Bo=J 0270 2 )t
1] T
= VO -V + [T 20 2.0+ V(e
Y
< WO+ [T 270 2+ vigle (39
If
V(+ 2, (D 2,(H<0 (36)

we obtain the upper bound of the cost function J,

as follows

REVO= 0P+ [ 270 e

+f PRACERErS @n

The condition (36) is equivalent to the existence of
P> 0 satisfying

&)
%, 2 hiby| K= dy)
x(t—dy)
A, P+PA+S PA,; PA[ ¢
* - 3y 0 x(t—d,)
* x = Sp | |x(t—dy)
+ T B TLED)T TLED4O. (33)

15=1
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By considering the following condition

,Z;‘.l /Z;Il hh( TLENT T8

< Zht’ T T (39)

it can be easily shown that the Inequality (38) is
equivalent to

,Z;:lh,v(z(t))k,(Z(a‘)) W+ SO kD) (¥, + T)<0,

(40)

From (40) we got (28) and (29). The (30) and (31)

are related to the upper bound of J; performance
measure. The first term of right hand side in (37) is
equivalent to (30). The second term of right hand
side in (37) has the following relations

fﬁodl(m‘/’T(r)S W Dde= ffd,(o)trw( a7s (D) )de

2
= tr{N,NIS |} = ;l tr{N{S N} tr{R}}. “n
This is equivalent — R+ N{S\N, <0, The third
term of right hand side in (37) has the following

relations

0 0
J o @S de= [ (7S (0}

= tr{N,NIS o} = tr{N]S Ny} Ctr{R,}. (42)

(4) and (42), (3D
o+ tH{R)+ tr{(R,) is an upper bound of guaranted
O

The next Theorem 1 presents a solution to the

From is obtained and

cost.

guaranteed cost filtering problem with = constrain
for the delayed fuzzy model in terms of LMIs from
lemma 1 and lemma 2.

Theorem 1. Consider the system (3), and let

R20,7=0,1,2 be a given initial state weighting
matrix ¥ > 0 a given scalar. If there exist common
matrix X>0, Z>0, §,>0,5>0, R>0, R>0
W, Y, i=1,2,-,7

and matrices i and positive

scalar @, p satisfying the following LMIs:

E
TS

£ 4% SClE B2 15

0,0, A0, i=1,2,...,7 43
O+ 0,0, Ayt A;<0, i<G<r, i=1,2,, 7(44)
—p+¢7(0) X ¢(0)+¢7(0) Zg(0) <0, 45)
—RANTSN.<0, i=1,2 (46)
X+Z—7Qy=<0 “n
Si—YQi<0, i=1,2, (48)

then there exists a fuzzy filter (7) such that the
estimation error system (8) achieves the guaranteed
cost function (11) and He constraint (12).

In here

8= p+ t{R}) + tr(Ry),

0,=
W+ Wi+ CLC.. XA~YLC,- W, XA, —Y,C, XB—YD
XA -YC—~W, 4.+ al ZA 4 0 ZB,;
ALX AlZ -3 0 0
~CLy, 0 0 -, 0
BIX-DTY, BTz 0 0 -1
(49)
Wi+ W+ CLC, XA~ Y.Ci—~W, XA, -Y.C,u
XA~ Y.C— W, 4, ZA; 0
A= AT X ALz -3 0
~CcLy, 0 0 -5, 0
where

4,=ZA+ATZ+S8,+S, S,=(1-8)S, r=1,2.
(51)

Furthermore, filter gains are given by

F=X"'W, G=Xx7'Y, (52)

Proof: Let P= diag{X,Z}, where X and Z are
symimetric positive definite matrices to be found
Denoting W;=XF, and Y,=XG, i=1,2,-,7,
and considering (10), we obtained (43)-(48) from
lemma 1 and lemma 2. O

It has been seen that the filter design problem of
the fuzzy system (3) can be transformed into a
linear algebra problem. This set of LMIs constitutes
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a finite-dimensional convex feasihility problem. There
are several efficient algorithms to solve the above

convex LMIs problem (17.18)

IV. Design example

We will design a fuzzy filter for the following

nonlinear system;

() = —5.125x,()—0.5x,(t+— d(9)) — 2x,(D)
—6.725(H —0.2x,(t— d(D)
—0.67x3(t— d(D) + w(d
xz(t) = x](t)
(&) = x,(H—0.01x,(t— D)+ 0. 1w(d &)
e(f) = 2x,(D
where time-varying delay and initial state is
d()=14+0.5cos (0.1 (4)

=L —el7, t<0

x1(?) is estimated using a fuzzy filter and assume
that %2(9 is observable. It is also assumed that

x(Hs[~1.5 1.5], xBOs[-1.5 1.5]. &5

Using the same procedure as in [6], the nonlinear
term can be represented as

—6.7x53(H=M - 0- x,(D—(1— M) - 15.075 x,(9).

(56)

By solving the equation, M 11 is obtained as follows:

2
X
M]l(xz(t)) = 1‘—f22_g_

2
ngL

2.95 - (67)

M lz(xz(t)) =
My and My; can be interpreted as membership
functions of fuzzy set. By using these fuzzy sets, the
nonlinear system can be presented by the following
T-S fuzzy model

AR 7 Azde] wape] &

ol
=

He BE ¥ FHFE 5

Plant Rule 1: IF xo(d is M THEN}

¥(D=Ax(D+ A 4x(t—d(D)+ B ,ud

W)= Cx() + C gx(t—d(D) + D 1u() (58)
e, (= C x(9),
ew(t) = Coolx( t)
Plant Rule 2: IF x2(d is M1, THEN}
2(D=Ap()+ A pa(t—d(D) + B yuld)
W= C (D + C px(t—d(D)+ D u(P (59)
ez(t)=C22x(t)
()= Coopx(D)
where ()= [x,( x9517,
—5.125 -2 —-0.5 =0.2
O N P
1 0 0 0 J
—5.125 —17.075 —0.5 —1.711
A,= VA=
’ [ 1 0 } “lo o LGO)
B,=B,=[1 017, ¢,=C,=I[0 1],
Cd1=Ca-z=[0 _001], Dl = D2=0.1,

C21=C,2=[1 0].
Ry= diag[2.4 2.4],

Coy= Cop= diag[1.5 1.5],
lLety=3, 8,=2F8,=0.05,
R,=R,= diag[2.7, 2.7],then filter gains obtained

from Theorem 1 are

—6.2112 —3.8335
r| |
~1.9171 —29.2087)
— 49771 —4.0592
| |
—2.1546 —29.4116
l - 2.7060} [ 5. 1443]
G = G-
Clomaes ) | 2003302 (61)

The upper bound of guaranteed cost is 7285, The
simulation
time-varying delays are shown in <Fig. 1(a)> and

results of nonlinear systems with

<Fig. 1(b)>, respectively.
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Fig. 1. The simulation result of nonlinear system
with time delays.

For these simulation, the noise signal w(d is
w(H=0.1"- cos(xd) (62)
and the initial value of the state is assumed by

27 () x7M1T=[1 —117, ¢<0. (63

The designed fuzzy filter estimates the states of the
nonlinear system without the steady state errors.

V. Conclusion

In this paper, we have developed guaranteed cost
fuzzy He Afilter design method for delayed fuzzy
dynamic have obtained sufficient
conditions for the existence of fuzzy filters such that
the estimation error system is globally exponentially

systems. We

stable and achieves guaranteed cost and He
performance simultancously. The filter design has

utilized the concept of parallel distributed

FAL SCHE B 2H 17

compensation and the filter gains can also be directly
obtained from the LMI solutions.
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