• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.022 seconds

An Empirical Study on the Land Cover Classification Method using IKONOS Image (IKONOS 영상의 토지피복분류 방법에 관한 실증 연구)

  • Sakong, Hosang;Im, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.107-116
    • /
    • 2003
  • This study investigated how appropriate the classification methods based on conventional spectral characteristics are for high resolution imagery. A supervised classification mixing parametric and non-parametric rules, a method in which fuzzy theory is applied to such classification, and an unsupervised method were performed and compared to each other for accuracy. In addition, comparing the result screen-digitized through interpretation to the classification result using spectral characteristics, this study analyzed the conformity of both methods. Although the supervised classification to which fuzzy theory was applied showed the best performance, the application of conventional classification techniques to high resolution imagery had some limitations due to there being too much information unnecessary to classification, shadows, and a lack of spectral information. Consequently, more advanced techniques including integration with other advanced remote sensing technologies, such as lidar, and application of filtering or template techniques, are required to classify land cover/use or to extract useful information from high resolution imagery.

  • PDF

The Method of Classification Considering Rule Weights in the Interval-Valued Fuzzy Sets (구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법)

  • Son Chang-Sik;Jeong Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.85-89
    • /
    • 2006
  • 구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.

  • PDF

Feature Impact Evaluation Based Pattern Classification System

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.25-30
    • /
    • 2018
  • Pattern classification system is often an important component of intelligent systems. In this paper, we present a pattern classification system consisted of the feature selection module, knowledge base construction module and decision module. We introduce a feature impact evaluation selection method based on fuzzy cluster analysis considering computational approach and generalization capability of given data characteristics. A fuzzy neural network, OFUN-NET based on unsupervised learning data mining technique produces knowledge base for representative clusters. 240 blemish pattern images are prepared and applied to the proposed system. Experimental results show the feasibility of the proposed classification system as an automating defect inspection tool.

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

Power System Voltage Stability Classification Using Interior Point Method Based Support Vector Machine(IPMSVM)

  • Song, Hwa-Chang;Dosano, Rodel D.;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • This paper present same thodology for the classification of power system voltage stability, the trajectory of which to instability is monotonic, using an interior point method based support vector machine(IPMSVM). The SVM based voltage stability classifier canp rovide real-time stability identification only using the local measurement data, without the topological information conventionally used.

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

A Study on Data Clustering Method Using Local Probability (국부 확률을 이용한 데이터 분류에 관한 연구)

  • Son, Chang-Ho;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target (수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.629-634
    • /
    • 2009
  • In real-time system application, the feature extraction and scoring algorithm for classification of the passive sonar target has the following problems: it requires an accurate and efficient feature extraction method because it is very difficult to distinguish the features of the propeller shaft rate (PSR) and the blade rate (BR) from the frequency spectrum in real-time, it requires a robust and effective feature scoring method because the classification database (DB) composed of extracted features is noised and incomplete, and further, it requires an easy design procedure in terms of structures and parameters. To solve these problems, an intelligent feature extraction and scoring algorithm using the evolution strategy (ES) and the fuzzy theory is proposed here. To verify the performance of the proposed algorithm, a passive sonar target classification is performed in real-time. Simulation results show that the proposed algorithm effectively solves sonar classification problems in real-time.

A Study For the Development of Enhanced Classification Method of Consumer Attributes (사용자 요구품질 추출과 분류방법의 개선에 관한 연구)

  • 김승남;김철홍;정영배;김연수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.67
    • /
    • pp.77-82
    • /
    • 2001
  • A study was conducted to develop a better classification method of Consumer Attributes that can enhance user-centered product design process. A modified QFD(Quality Function Deployment) survey form based upon Fuzzy set theory was proposed which contains 9 steps of importance level, and Certainty and Necessity function to improve the reliability of extracted consumer attributes. To verify the betterment and advantage of proposed classification method, a series of questionnaire survey was performed. Thirty male and 30 female university students were participated in the survey using a VCR as a target product. The result of the study showed that 80% of subjects were preferred the proposed classification over existing method. A cluster analysis was performed to further verify the betterment of the proposed method. The result also supported that the proposed classification method is more reliable and enhanced method in extracting consumer attributes and can be applied in the product design.

  • PDF