• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.029 seconds

Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty (불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • As the industries have developed, a myriad of big data have been produced and the inherent uncertainty in the data has also increased accordingly. In this paper, we propose an interval type-2 fuzzy clustering method to deal with the inherent uncertainty in the data and, using this method, design and optimize the fuzzy neural network. Fuzzy rules using the proposed clustering method are designed and carried out the learning process. Genetic algorithms are used as an optimization method and the model parameters are optimally explored. Experiments were performed with two pattern classification, both of the experiments show the superior pattern recognition results. The proposed network will be able to provide a way to deal with the uncertainty increasing.

Development of Classification System for Material Temperature Responses Using Neuro-Fuzzy Inference (뉴로퍼지추론을 이용한 재질온도응답 분류시스템의 개발)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • This paper describes a practical system to classify material temperature responses by composition of curve fitting and neuro-fuzzy inference. There are problems with a classification system which utilizes temperature responses. It requires too much time to approach the steady state of temperature response and it has to be filtered to remove the noise which occurs in experiments. Thus, this paper proposes a practical method using curve fitting only for transient state to remove the above problems of time and noise. Using the neuro-fuzzy system, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be classified via its inferred thermal conductivity. To realize the system, we designed a contact sensor which has a similar structure with human finger, implemented a hardware system, and developed a classification software of curve fitting and neuro-fuzzy algorithm.

  • PDF

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

Fuzzy K-Nearest Neighbor Algorithm based on Kernel Method (커널 기반의 퍼지 K-Nearest Neighbor 알고리즘)

  • Choi Byung-In;Rhee Frank Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • 커널 함수는 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(FKKNN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상 시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과를 분석한다.

  • PDF

An Algorithmic approach for Fuzzy Logic Application to Decision-Making Problems (결정 문제에 대한 퍼지 논리 적용의 알고리즘적 접근)

  • 김창종
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.3-15
    • /
    • 1997
  • In order to apply fuzzy logic, two major tasks need to be performed: the derivation of fuzzy rules and the determination of membership functions. These tasks are often difficult and time-consuming. This paper presents an algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems; the method includes an entropy minimization for clustering analog samples. Membership functions are derived by partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy clustering. In the mle derivation process, rule weights are also calculated. Inference and defuzzification for classification problems are also discussed.

  • PDF

Adaptive Object Classification using DWT and FI (이산웨이블릿 변환과 퍼지추론을 이용한 적응적 물체 분류)

  • Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2006
  • This paper presents a method of object classification based on discrete wavelet transform (DWT) and fuzzy inference(FI). It concentrated not only on the design of fuzzy inference algorithm which is suitable for low speed uninhabited transportation such as, conveyor but also on the minimize the number of fuzzy rule. In the preprocess of feature extracting, feature parameters are extracted by using characteristics of the coefficients matrix of DWT. Such feature parameters as area, perimeter and a/p ratio are used obtained from DWT coefficients blocks. Secondly, fuzzy if - then rules that can be able to adapt the variety of surroundings are developed. In order to verify the performance of proposed scheme, In the middle of fuzzy inference, the Mamdani's and the Larsen 's implication operators are utilized. Experimental results showed that proposed scheme can be applied to the variety of surroundings.

  • PDF

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Face Recognition Using Fuzzy Fusion and Wavelet Decomposition Method

  • Kwak, Keun-Chang;Min, Jun-Oh;Chun, Myung-Geun;Witold Pedrycz
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.364-367
    • /
    • 2003
  • In this study, we develop a method for recognizing face images by combining wavelet decomposition, fisherface method, and fuzzy integral. The proposed approach comprises of four main stages. The first stage uses the wavelet decomposition. As a result of this decomposition, we obtain four subimages. The second stage of the approach applies a fisherface method to these four subimage sets. The two last phases are concerned with the generation of the degree of fuzzy membership and the aggregation of the individual classifiers by means of the fuzzy integral. The experimental results obtained for the CNU and Yale face databases reveal that the approach presented in this study yields better classification performance in comparison to the results produced by other classifiers.

  • PDF

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF

Generating Fuzzy Rules by Hybrid Method and Its Application to Classification Problems (혼합 방법에 의한 퍼지 규칙 생성과 식별 문제에 응용)

  • Lee, Mal-Rey;Lee, Jae-Pil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1289-1296
    • /
    • 1997
  • To build up a knowledge-based system in an Artifical Inerligence System, selecting an appropriate set of rules is one of the key provlems. In this paper, we discuss a new method for exteacting fuzzy rules diredtly from fuzzy membdrchip function dat for pattern classifcation. The fuzzy rules with variable fuzzy recions are defined by sharing fuzzy space in fuzzy grid.Tehse rules are extracted form memberchop function. Them, optimal input vari-ables for the rules are determined using the number of extracted rules as a criterion. The method is compared with neural networks using Ishibuchi. Finally, in order to demonstrate the cffectiveness of the present method, simulation results are shown.

  • PDF