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Abstract - In this study, we develop a method for
recognizing face images by combining wavelet
decompoesition, fisherface method, and fuzzy integral.
The proposed approach comprises of four main

stages. The first stage uses the wavelet decomposition.

As a result of this decomposition, we obtain four
subimages. The second stage of the approach applies

a fisherface method to these four subimage sets. The _

two last phases are concerned with the generation of
the degree of fuzzy membership and the aggregation
of the individual classifiers by means of the fuzzy
integral. The experimental results obtained for the
CNU and Yale face databases reveal that the
approach presented in this study yields better
classification performance in comparison to the
results produced by other classifiers.

1. Introductory comments

Face recognition is one of the most interesting and
challenging areas in computer vision and pattern
recognition. The popular approaches for face recognition
are eigenface and fisherface method. Eigenface method
or Principal Component Analysis (PCA) is most well
known methods for face recognition [1]. Each of them
comes with some advantages but is not free from
limitations and drawbacks when cast in the setting of
face recognition. The PCA approach exhibits optimality
when it comes to dimensionality reduction however it is
not ideal for classification purposes as it retains
unwanted variations occurring due to lighting and facial
expression [2]. To overcome this problem, proposed was
an enhancement known as a fisherface method or
Fisher’s Linear Discriminant (FLD)[2]. This statistically
motivated method maximizes the ratio of between-
scatter matrix and within-scatter matrix and in this sense
attempts to involve information about classes of the
patterns under consideration. In general, this method is
used in conjunction with the PCA where the PCA
technique first projects the set of images to a lower-
dimensional space so that the resulting within-class
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scatter matrix to be used by the FLD becomes
nonsingular. There are various enhancements to the
generic form of the FLD technique.

On the other hand, the recent trend of approaches in
face recognition involves wavelet-based methods where
these come in the form of spectroface [3], and
discriminant waveletfaces [4]. These methods use
images that are usually decomposed into four subimages
(approximation, horizontal, vertical, and diagonal
detailed image) via the high-pass and low-pass filtering.
In general, an approximation (compressed) image that
shows the best performance among the four subimages
at the same level is used in further classification
procedure [3][4]. But, a single set of approximation
images may not be enough to capture the complete
information due to large and unwanted variations.

In this study, we perform fisherface method based on
four subimage sets obtained by wavelet decomposition.
Here, the fusion of the individual classifiers is realized
through fuzzy integration with fuzzy integral being
employed in this construct [5]{6]. The purpose of the
fuzzy integral is to combine the results of multiple
sources of information. Finally, we cover simulation
results for the two face databases available at CNU
(Chungbuk National University) and Yale .

2. Fuzzy measure and fuzzy integral

In the section, we shall introduce the properties of
fuzzy measure and fuzzy integral. Fuzzy measure and
fuzzy integral dwell on the concepts of fuzzy sets and
are viewed as an interesting aggregation alternative
applied to fuzzy sets.

2.1 Fuzzy measure
Let Y={y.y,.....y,}] be a finite set and let
P(Y)=2" denote the family of all subsets of Y. A set
function g:2¥ —[0,1] is called a fuzzy measure if
1) Boundary conditions: g(¢)=0,g(Y)=1
2) Monotonicity: g(A) < g(B),if A cBandA,BeP(Y)
From this definition, Sugeno[5] introduced the g, fuzzy



measure satisfying the following additional property
g(AUB) = g(A) +g(B) + Ag(A)g(B) ey

forall A, BcY and ANB=¢, and for some A>-1.
In general, the value of the constant A can be
determined by the properties of the g, -fuzzy measure
as follows

Let g:Y—[01] be a fuzzy subset of Y and let
A, ={y.,Yi1»--»y,|. Note that when g is a g, -fuzzy
measure, the values of g(A,) can be determined
recursively as

gA) =gy ) =¢ 2
g(A)= gi +g(A, )+ )“gig(Ai—])5 for 1<i<n (3)

Because of the boundary condition g(Y)=1, A is
determined by solving the following polynomial
equation

x+1=H(1+xg‘) 4

where A e(-1,+w) and A=0. The solution can be
easily obtained. Obviously we are interested in the
unique root greater than —1. Thus the calculations of the
fuzzy integral with respect to a g, -fuzzy measure can
be realized once we are given with the values of the
density function g' available for the individual points.

2.2 Fuzzy integral
The fuzzy integral taken over Y of the function h with
respect to a fuzzy measure g is defined in the form

fh(y)egl) = S!{lﬂpu[min[a,g({yi h(y) 2 a})] )]

When the values of h(.) are ordered in the decreasing
sequence, h(y )2h(y,)>---2h(y,), the fuzzy integral
can be calculated as follows

Jh(y) ° g() = max|min(h(y,).g(A,))] (©)

It has been shown that Eq. (6) is not a proper extension
of the usual Lebesgue integral. In other words, when the
measure is additive the above expression does not return
the integral in the Lebesgue sense. In order to overcome
this drawback, Murofushi[6] proposed a so-called
Choquet integral computed in the same way

[.h(y)eg() = g[my.) ~h(y,.)B(A),h(y..)=0 (7

3. Fisher’s Linear Discriminant (FLD)

In this section, we briefly describe the fisherface
method. Let a face image be a two-dimensional nxn
array of containing levels of intensity of the individual
pixels. An image z, may be conveniently considered
as a vector of dimension n’. Denote the training set of
N face images by Z=(z,,z,,...,z,). We define the
covariancs matrix as follows

R=—20, —z)z, —7)" = DD (8)
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Xz, ®

Then, the eigenvalues and eigenvectors of the
covariance matrix R are calculated, respectively. Let
E=(e,e,,~,e,) contain the r eigenvectors corres-
ponding to the r largest eigenvalues. For a set of
original face images Z , their corresponding reduced
feature vectors X=(x,,x,,...,x,) can be obtained as
follows according to the following relationship

X, =E"(z, -z) (10)

The second processing stage is based on the use of
the FLD and can be described as follows. Consider ¢
classes in the problem with N samples; let the
between-class scatter matrix be defined as

S, ——-iNi(mi—;n—)(m‘—;)T (11)

where N, is the number of samples in i’th class C,

and m is the mean of all samples, m, is the mean of

class C,. The within-class scatter matrix is defined as
follows

S, = ;ZHEC("* -m,)x, -m,)" :gswi (12)
where S, is the covariance matrix of class C, .
The optimal projection matrix W, is chosen as the
matrix with orthonormal columns that maximizes the
ratio of the determinant of the between-class matrix of
the projected samples to the determinant of the within-
class fuzzy scatter matrix of the projected sampled, i.e.,

[Ws,W|

I—VTWVVI:[W‘ w, - ow,] (13)

WFLD=argmv3x
where {w,[i=12,--,m} is the set of generalized
eigenvectors (discriminant vectors) of S, and S,
corresponding to the c¢-1 largest generalized
eigenvalues {i,|i=12,--,m}, ie.,

Sew, =A,S,w, i=12,...,m (14)

Thus, the feature vectors V=(v,,v,,...,v,) for any
face images z, can be calculated as follows

v, =W x, = Wi ,E"(z, - 2) (15)
To complete classification of a new pattern (face) z’, we
compute a Euclidean distance between z’ and a pattern
in the training set z that is

d(z,z')=||v—v'|| (16)

4. Wavelet decomposition

The wavelet transform has been applied to image
processing and texture classification with an objective to
carry out a comprehensive multiresolution decom-
position. The previous works [3][4] used only
approximation image among the four subimages
available. This choice was motivated by an observation
that this image is the best approximation to the original



image within the lower-dimensional space and contains
the highest energy content within the four subimages
available. On the other hand, Sergent [7] found that the
low-frequency band and high-frequency components
band played different roles in the classification task. The
low-frequency components contribute to the global
description, while the high-frequency components
contribute to the finer details required in the
identification task. Taking this into account, we consider
an approximation images as well as the three detailed
images including auxiliary information.

In this paper, we wuse the most known
Daubechies(dbl), along with D4(db2, db4, db6, dbg).
Daubechies, invented a family of compactly supported
orthonormal wavelets making a discrete wavelet
analysis practicable.

Fig. 1 shows the architecture of the two-dimensional
wavelet decomposition realized at level 1. Here, Hand L
represent the high-pass and low-pass filter, respectively.
As shown in Fig. 1, we can obtain four subimages by
wavelet decomposition. In the previous works [3][4], the
z,, image is used to carry out face recognition; the
choice of the z; is dictated by its best performance
among the four subimages occurring at the same level.
In our study, we perform the face recognition using z,;
as well as the three remaining subimages z,,,z,, , and
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Fig.1. Architecture of two-dimensional wavelet
decomposition

5. Face recognition by fuzzy integral

In this section, we combine the wavelet
decomposition, fisherface method and fuzzy integral

into a single coherent classification platform. The

architecture of the overall face recognition system using
the proposed method is shown Fig.2. In what follows,
we briefly describe the proposed method.

[Stepl] Perform the wavelet decomposition for the
training image set to extract the intrinsic features of the
patterns. Here, we obtain four sets of subimages.

[Step2] Use the fisherface method for four subimage
sets, respectively. The feature vectors of the training
image set and a given test image are obtained by using
Eq. (15). The values of Euclidean distance are computed
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for the feature vectors produced from the training image
set and a given test image using Eq. (16).
[Step3] Generate the membership grades h(y;) based on
the distance information produced in [Step 2].

h(Yi)=_Z (uij)/N( (17)
where h(ich) represents the between-class mean of
membership grades in each classifier and N, is the
number of samples in t’th class C,. The membership
grades can be determined in many different ways; here
we follow the method that their calculations use the
distances between the test image and those existing in
the training set, namely

k]

d

where i is the number of classifier and j is the index of
the training face image. d denotes an average distance
between all distance values, d; is the Euclidean
distance of feature vector between a given test image
and j’th training image in i’th classifier.

[Step 4] Aggregate the output of each classifier h(y,)
and the degree of importance of each classifier g,
using the mechanisms of the fuzzy integral. The class
giving rise to the highest value is declared to be the
output of the classifier. The fuzzy densities g used in
the classifier can be either estimated subjectively or
obtained from the training data. Here we follow the two
approaches and contrast the results. The computations
of g; based on the training data are carried out in the
form of the normalized weighted sum

h,) =—(‘ﬂ as)
1+

(19)

where p, is the classification rate in [0,1] of each
classifier for the training set of images. These values are
obtained by leave-one-out technique for training set. w,
is the subjective weight value.
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Fig.2 Overall architecture of face recognition



6. Experiments

6.1. CNU Face Databases

The CNU database contains 100 face images coming
from 10 individuals. The total number of images for
each person is 10. They vary in face pose and exhibit a
substantial level of light variation. The size of each
original image is640x480. The wavelet decomposition
was completed at level 3. Each image was digitized and
presented by a 80x60 pixel (dbl) array whose values
of the gray levels ranged in between 0 and 255. In the
following, we evaluate the performance of face
recognition through a 10 fold cross-validation. We first
project the image set from N-dimensional space (N-c)-
dimensional space and then compute the c-1
discriminant vectors. We selected 80 eigenvectors and 9
discriminant vectors. Fig. 3 includes the pertinent plots
that help visualize the differences. In the case of
eigenface method, we found the recognition rate to be
84.6%. In the case of fisherface method, we noticed
substantial improvement and the recognition rate of
95.4%. On the other hand, the recognition rates by fuzzy
integral and Choquet integral are equal to 98% and
98.4%, respectively.

6.2. Yale Face Databases

The Yale face database contains 165 face images of
15 individuals, as shown in Figure 16. There are 11
images per subject and the size of each original image
is 243x320. In this experiment we used the face image
cropped and resized to remove the background
information. The wavelet decomposition was applied at
level 2. Fach image was digitized and presented by a
61x52 pixel (dbl) array. The experiments are
completed in the same format as for the previous
database. We selected 135 eigenvectors and 14
discriminant vectors. The plots of the classification rates
are shown in Fig. 4. The fisherface method yields
96.60% classification rate whereas the integration using
fuzzy integral and Choquet integral brings us close to
100% producing 99.11% and 99.24%, respectively
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Fig.3. Comparison of recognition rates (CNU)
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Fig.4. Comparison of recognition rates (Yale)

7. Concluding comments

We have discussed the fusion of classifiers for the
face recognition problem realized with the aid of fuzzy
integration of outcomes of the individual classifiers. The
experiment results revealed that the use of the
approximation image as well as three detailed images
(including information that is unavailable in the
compressed image) we were able to reduce sensitivity
caused by varying illumination and viewing conditions
associated with the original image.
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