DOI QR코드

DOI QR Code

Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty

불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계

  • 박건준 (가천대학교 스마트그린홈연구센터) ;
  • 김용갑 (원광대학교 정보통신공학과) ;
  • 황근창 (원광대학교 반도체디스플레이학과)
  • Received : 2016.10.05
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

As the industries have developed, a myriad of big data have been produced and the inherent uncertainty in the data has also increased accordingly. In this paper, we propose an interval type-2 fuzzy clustering method to deal with the inherent uncertainty in the data and, using this method, design and optimize the fuzzy neural network. Fuzzy rules using the proposed clustering method are designed and carried out the learning process. Genetic algorithms are used as an optimization method and the model parameters are optimally explored. Experiments were performed with two pattern classification, both of the experiments show the superior pattern recognition results. The proposed network will be able to provide a way to deal with the uncertainty increasing.

산업이 발달함에 따라서 빅데이터가 무수히 생산되고 있으며 이에 따라서 데이터에 내재된 불확실성도 증가하고 있다. 본 논문에서는 데이터에 내재된 불확실성을 다루기 위해 interval type-2 퍼지 클러스터링 방법을 제안하고 이를 이용하여 퍼지뉴럴네트워크를 설계하고 최적화한다. 제안한 클러스터링 방법을 이용하여 퍼지 규칙을 설계하고 학습을 수행한다. 최적화하는 방법으로서 유전자 알고리즘을 이용하고 모델 파라미터들을 최적 탐색한다. 실험에서는 두 가지 패턴 분류를 시행하였으며 두 가지 실험 모두 우수한 패턴 인식 결과를 보여준다. 제안한 네트워크는 증가하는 불확실성을 다룰 수 있는 방법을 제공할 수 있을 것이다.

Keywords

References

  1. D. Laney, "3D Data Management: Controlling Data Volume, Velocity and Variety," META Group Research Note, 2001.
  2. Gartner.com, "Big data," IT Glossary. [Online]. Available: http://www.gartner.com/it-glossary/big-data/, 2012
  3. X. Z. Wang and J. Huang, "Editorial: Uncertainty in learning from big data," Fuzzy Sets Syst., vol. 258, pp. 1-4, Jan. 2015. https://doi.org/10.1016/j.fss.2014.10.010
  4. L. A Zadeh, "Fuzzy sets", Inf. Control 8, pp. 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  5. K. J. Park, Y. K. Kim, B. G. Kim and G. C. Hoang, "Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space," The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), vol. 13 no. 2, pp. 181-189, Apr. 2013. DOI : 10.7236/JIIBC.2013.13.2.181
  6. H.S. Choi, "Tuning Method of the Membership Function for FLC using a Gradient Descent Algorithm", Journal of the Korea Academia-Industrial cooperation Society(JKAIS), vol. 15, no. 12, pp.7277-7282, 2014. https://doi.org/10.5762/KAIS.2014.15.12.7277
  7. L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning-I," Information Science, vol. 8, pp. 199-249, 1975. https://doi.org/10.1016/0020-0255(75)90036-5
  8. M. Mizumoto, and K. Tanaka, " Some Properties of Fuzzy Sets of Type-2," Information and Control, vol. 31, pp. 312-340, 1976 https://doi.org/10.1016/S0019-9958(76)80011-3
  9. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall: NJ, 2001.
  10. Y.-Y. Lin, S.-H. Liao, J.-Y. Chang, and C.-T. Lin, "Simplified Interval Type-2 Fuzzy Neural Networks," IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 959-969, May 2014. https://doi.org/10.1109/TNNLS.2013.2284603
  11. D. E. Golderg, Genetic Algorithm in search, Optimization & Machine Learning, Addison wesley, 1989.
  12. UCI Machine Learning Repository: Data Sets, http://archive.ics.uci.edu.