• Title/Summary/Keyword: fuzzy K means

Search Result 430, Processing Time 0.033 seconds

Non-associative fuzzy-relevance logics: strong t-associative monoidal uninorm logics

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.12 no.1
    • /
    • pp.89-110
    • /
    • 2009
  • This paper investigates generalizations of weakening-free uninorm logics not assuming associativity of intensional conjunction (so called fusion) &, as non-associative fuzzy-relevance logics. First, the strong t-associative monoidal uninorm logic StAMUL and its schematic extensions are introduced as non-associative propositional fuzzy-relevance logics. (Non-associativity here means that, differently from classical logic, & is no longer associative.) Then the algebraic structures corresponding to the systems are defined, and algebraic completeness results for them are provided. Next, predicate calculi corresponding to the propositional systems introduced here are considered.

  • PDF

Problems in Fuzzy c-means and Its Possible Solutions (Fuzzy c-means의 문제점 및 해결 방안)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • Clustering is one of the well-known unsupervised learning methods, in which a data set is grouped into some number of homogeneous clusters. There are numerous clustering algorithms available and they have been used in various applications. Fuzzy c-means (FCM), the most well-known partitional clustering algorithm, was established in 1970's and still in use. However, there are some unsolved problems in FCM and variants of FCM are still under development. In this paper, the problems in FCM are first explained and the available solutions are investigated, which is aimed to give researchers some possible ways of future research. Most of the FCM variants try to solve the problems using domain knowledge specific to a given problem. However, in this paper, we try to give general solutions without using any domain knowledge. Although there are more things left than discovered, this paper may be a good starting point for researchers newly entered into a clustering area.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

T-sum of bell-shaped fuzzy intervals

  • Hong, Dug-Hun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.81-95
    • /
    • 2006
  • The usual arithmetic operations on real numbers can be extended to arithmetical operations on fuzzy intervals by means of Zadeh's extension principle based on a t-norm T. A t-norm is called consistent with respect to a class of fuzzy intervals for some arithmetic operation if this arithmetic operation is closed for this class. It is important to know which t-norms are consistent with a particular type of fuzzy intervals. Recently Dombi and Gyorbiro proved that addition is closed if the Dombi t-norm is used with two bell-shaped fuzzy intervals. A result proved by Mesiar on a strict t-norm based shape preserving additions of LR-fuzzy intervals with unbounded support is recalled. As applications, we define a broader class of bell-shaped fuzzy intervals. Then we study t-norms which are consistent with these particular types of fuzzy intervals. Dombi and Gyorbiro's results are special cases of the results described in this paper.

  • PDF

Improved TI-FCM Clustering Algorithm in Big Data (빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.419-424
    • /
    • 2019
  • The FCM algorithm finds the optimal solution through iterative optimization technique. In particular, there is a difference in execution time depending on the initial center of clustering, the location of noise, the location and number of crowded densities. However, this method gradually updates the center point, and the center of the initial cluster is shifted to one side. In this paper, we propose a TI-FCM(Triangular Inequality-Fuzzy C-Means) clustering algorithm that determines the cluster center density by maximizing the distance between clusters using triangular inequality. The proposed method is an effective method to converge to real clusters compared to FCM even in large data sets. Experiments show that execution time is reduced compared to existing FCM.

Design of fuzzy Independence Array Structure using DNA Coding Optimization (DNA 코딩 최적화에 의한 독립 배열구조의 퍼지규칙 설계)

  • Kwon, Yang-Won;Choi, Yong-Sun;Han, Il-Suk;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3019-3021
    • /
    • 2000
  • In this paper. a new fuzzy modeling algorithm is proposed : it can express a given unknown system with a small number of fuzzy rules and be easily implemented. This method uses an independent array instead of a lattice form for a premise membership function. For the purpose of getting the initial value of fuzzy rules. the method uses the fuzzy c-means clustering method. To optimally tune the initial fuzzy rule. the DNA coding method is also utilized at same time. Box and Jenkins's gas furnace data is used to illustrate the validity of the proposed algorithm.

  • PDF

FUZZY CONTROL LAW OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

  • Sul Cho;Park, Rai-Woong;Nam, Sae-Kyu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.205-209
    • /
    • 1998
  • A synthesis of fuzzy variable structure control is proposed to design a high-angle-of-attack flight system for a modification version of the F-18 aircraft. The knowledge of the proportional, integral, and derivative control is combined into the fuzzy control that addresses both the highly nonlinear aerodynamic characteristics of elevators and the control limit of thrust vectoring nozzles. A simple gain scheduling method with multi-layered fuzzy rules is adopted to obtain an appropriate blend of elevator and thrust vectoring commands in the wide operating range. Improving the computational efficiency, an accelerated kernel for on-line fuzzy reasoning is also proposed. The resulting control system achieves the good flying quantities during a high-angle-of- attack excursion. Thus the fuzzy logic can afford the control engineer a flexible means of deriving effective control laws in the nonlinear flight regime.

  • PDF

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

Fuzzy logic based estimation of effective lengths of columns in partially braced multi-storey frames

  • Menon, Devdas
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.287-299
    • /
    • 2001
  • Columns in multi-storey frames are presently categorised as either braced or unbraced, usually by means of the stability index criterion, for estimating their effective length ratios by design aids such as 'alignment charts'. This procedure, however, ignores the transition in buckling behaviour between the braced condition and the unbraced one. Hence, this results in either an overestimation or an underestimation of effective length estimates of columns in frames that are in fact 'partially braced'. It is shown in this paper that the transitional behaviour is gradual, and can be approximately modelled by means of a 'fuzzy logic' based technique. The proposed technique is simple and intuitively agreeable. It fills the existing gap between the braced and unbraced conditions in present codal provisions.