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Abstract: This paper presents a new stochastic approach for solving combinatorial
optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm
(GA). This approach combines GA with simulated annealing (SA) to improve the performance
of GA. GA and SA have complementary strengths and weaknesses. While GA explores the
search space by means of population of search points, it suffers from poor convergence
properties. SA, by contrast, has good convergence properties, but it cannot explore the search
space by means of population. However, SA does employ a completely local selection strategy
where the current candidate and the new modification are evaluated and compared. To verify
the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing
an inverted pendulum on a cart is considered.

Keywords: Combinatorial optimization problem, fuzzy control, genetic algorithm, simulated

annealing.

1. INTRODUCTION

Throughout the last decades, the role of
optimization has steadily increased in such diverse
areas, such as, electrical engineering, computer
science, and communication. In practice, optimization
problems become more and more complex. For
instance, many large scale combinatorial optimization
problems can only be solved approximately, which is
closely related to the fact that many of these problems
have been proved NP-hard. Their deterministic
polynomial time algorithms are unlikely to exist. The
quality of the final solution is in contradiction with
computation time. To search an optimum of a function
with continuous variables is difficult if there are many
peaks and valleys. In these cases, traditional
optimization methods are not competent. They will
either be trapped to local optima or need much more
search time. In recent years, many researchers have
been trying to find new ways to solve these difficult
problems, and stochastic approaches have attracted
much attention [1-5].

Simulated annealing (SA) [6] and genetic algorithm
(GA) [3] represent powerful combinatorial optimization
methods with complementary strengths and weaknesses.
Each method requires little knowledge’ regarding the
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problem which is to be optimized. The only necessary
information required is knowing the fitness or cost
function that needs to be applied to the candidate
solutions. The two techniques initially begin a search
through the space of candidate solutions with
randomly generated candidates, and then they
incrementally generate new candidates by applying
operators. Each decision determining which candidates
are pursued is controlled by a probabilistic decision
procedure that guides the method into near optimal
regions of the solution space. To get the synergy effect
between GA and SA, many literatures considered the
combination of each other [7-9]. Tabu search was
combined with GA and SA, but much more memory
space is needed to store the visited states [7]. In [§],
chemotaxis algorithm was used to improve the
performance of GA and SA, the evolution strategies
controlled the step size of the variables and SA was
used for termination and selection criteria for the
evolution strategies in [9].

.This paper proposes a new method that combines
the recombinative power of GA and local selection of
SA by using a SA-selection. The new algorithm takes
advantage of those aspects of GA that lend themselves
to population-based optimization, and avoid serial
bottle necks of GA approaches by incorporating
elements of SA. The proposed method is applied to
the optimization of a fuzzy controller for balancing an
inverted pendulum on a cart.

2. SIMULATED ANNEALING AND GENETIC
ALGORITHM

Before proceeding with the detailed explanation of
the proposed algorithm, we will briefly remind the



SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller , 237

two basic traditional algorithms and their comparisons.

2.1. Simulated annealing (SA)

SA is a method that has attracted significant
attention for large-scale optimization problems that
have many local minima and make reaching the global
minimum difficult by randomly generating a
candidate solution, and then making successive
random modifications.

The idea of SA comes from the physical annealing
process done on metals and other substances. In
metallurgical annealing, a metal body is heated to near
its melting point, and then slowly cooled back down
to absolute zero temperature. This process will cause
the global energy function of the metal to reach on
absolute minimum value eventually. If the
temperature is dropped too quickly, the energy of the
metallic lattice will be much higher than this
minimum because of the existence of frozen lattice
dislocations that would otherwise disappear
eventually because of thermal agitation.

Analogous to this physical behavior, SA allows a
system to change its state to a higher energy state
occasionally such that it has a chance to jump out of
local minima and seek the global minimum. The
function to be minimized, i.e. the performance index,
is analogous to the energy of metal, and the control
parameter, called temperature, is analogous to the
temperature of metal. Downhill moves are always
accepted, whereas uphill moves are accepted with the
probability that is a function of temperature. The
acceptance probability is expressed in the following
form:

P=exp(-AQ/T), N
A0=0y0y Qs 1s  the

performance index which will be defined later, and T
is the current temperature. If 4Q is negative then

where change of

the new solution is always accepted. If A4Q is

positive then the new solution could be accepted with
the acceptance probability in (1). The possibility of
accepting the uphill move permits escaping from the
local minima.

After the decision of acceptance of a new solution,
the current temperature is adjusted by cooling
schedule, and the process is repeated until some
convergence conditions are reached. Because of its
speed, the exponential cooling schedule is used in this
research. The temperature at any stage during the
optimization may be expressed as follows:

T, =o' 1, (2)

where 7; is the initial temperature that is large

enough, « is the cooling rate, and k£ is the time
index.

2.2. Genetic algorithm (GA)

GA is a search algorithm based on an analogy with
the process of natural selection and evolutionary
genetics. The conventional GA has three basic
operators, such as selection, crossover, and mutation.

In the selection operator, strings with high fitness
have multiple copies in the next generation, whereas
strings with low fitness have fewer copies or even
none at all. In this paper, we apply proposed SA-
selection to GA, while tournament selection is
considered in GA to compare with the proposed
method.

The crossover operator produces two offspring by
recombining the information from two parents in two
steps. First, a given number of crossing sites are
selected along the parent strings uniformly at random.
Second, two new strings are formed by exchanging
alternate pairs of selection between the selected sites.
In the simplest form, crossover with a single crossing
site refers to taking a string, splitting it into two parts
at a randomly generated crossover point, and
recombining it with another string which has also
been split at the same crossover point. This procedure
serves to promote change in the best strings which
could give them even higher fitness. This procedure
will be executed continuously until the crossover rate
is reached. Single crossing site is considered in this
paper.

The mutation operator is held to escape the local
minima in the search space of the artificial genetic
approach. A random position of a random individual
is chosen and is replaced by another value. The total
number of bits selected to mutate is settled by the
mutation rate. In general, the mutation rate is quite
small and fixed. In this research, if mutate, the
selected real gene is changed for the random
generated value.

2.3. Comparing GA with SA

Although GA and SA are similar, there are some
important differences between the two methods. One
important distinction is that SA possesses a formal
proof of convergence to the global optimum, which
GA does not have {10,11]. This convergence proof
relies on a very slow cooling schedule of setting the
temperature. While this cooling schedule is
impractical, it identifies a useful trade-off where
longer cooling schedules tend to lead to better quality
solutions. There is no such control parameter in GA,
and premature convergence to local optima is a
significant problem. Another difference between GA
and SA is that SA accepts newly generated candidate
solutions probabilistically based on their performance
index, and only accepts inferior candidates some of
the time. This is in contrast to GA, where new
candidates are always accepted, even though they are
significantly inferior to older candidates. This
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Table 1. SA-selection function for choosing the surviving solution given the three candidates.

SA-selection(offspring(i], parent[i], best solution, T[i])
Case SA(ofispring/i], SA(offspring[i], SA(parent[i], return
parent[i], T[i]) best solution, T[i]) | best solution, T[i])

1 offspring[i] offspring[i] parent[i] offspring[i]
2 offspringfi] offspringl[i] best solution offspring(i]
3 offspring[i] best solution parent[i] offspringli]
4 offspring[i] best solution best solution best solution
5 parent[i] offspring[i] parentfi] parent[i]

6 parent{i] offspring[i] best solution offspringfi]
7 parent[i] best solution parent/i] parent[i]

8 parentfi] best solution best solution best solution

characteristic can lead to disruption, where good
candidates are lost or damaged, preventing optimal
performance.

Despite these shortcomings, there are some distinct
advantages of GA over SA. GA maintains a
population of candidate solutions, while SA maintains
only one solution (serial nature). This has many
significant impacts on how the solution space is
searched. GA can retain useful redundant information
about what it has learned from previous searches by
its representation in individual solutions in the
population. Critical components of past good
solutions can be captured, which can be combined
together via crossover to form high quality solutions.
SA, on the other hand, retains only one solution in the
space, and exploration is limited to the immediate
neighborhood.

In this research, the hybrid method that combines
the recombinative power of GA and the annealing
schedule of SA is presented.

3. PROPOSED ALGORITHM

As mentioned before, in this section, the new
selection method called SA-selection is introduced
and applied to GA to get the synergy effect between
GA and SA. The main concept of SA-selection is to
choose a single candidate solution between parent,
offspring, and best solution of the generations, where
offsprings are taken by applying crossover and
mutation to the parents as shown in Fig. 1. To do so,
the selection function SA-selection(offspringfi],
parent[i], best solution, T[i]) is defined, which applies
the traditional SA function S4(a, b, T) multiple times
to identify the single surviving candidate, where i of
the SA-selection function indicates the index of the
individual. The function S4(a, b, T) calculates the
acceptance probability P=exp(-(cost(a)-cost(b))/T),
where cost(a) is the performance index of candidate a.
If cost(a)scost(b), then candidate a will be selected. If
cost(a)>cost(b) and P>random number in [0, 1], then

candidate ¢ will be selected too. Except these cases,
candidate » will be selected. These processes are
represented in Table 1. In this SA-selection function,
offspring[i] and parent[i] are compared with each
other, then with best solution. For example, consider
case 2 in Table 1, where offspring/i] is accepted over
both parent([i] and best solution, but best solution is
accepted over parent[i]. Hence, offspring[i] is
accepted overall and returned. But in case 3 and 6 a
candidate is not uniquely determined. In these cases,
offspring[i] is always accepted to maintain genetic
diversity. This situation only occurs at high temperature
where the affect of temperature dominates, rather than
individual solution cost that dominates at low
temperature. Obviously, case 3 and 6 in Table 1 will not
happen for the temperatures near zero.

Additionally, in the proposed algorithm, we use
random generated initial temperatures for the SA-
selection of each individual, so that some individuals
tend to accept the best-fit solution’s individual
(exploitation), and some other individuals allow uphill
move with the higher acceptance probability
(exploration), respectively. This means that the
population stores a diversity of annealing schedules
too. For instance, an individual that has the initial
temperature near zero tend to select the best-fit
solution for all generations, while an individual that
has high initial temperature maintains search diversity.
If we use random generated initial temperatures for
the SA-selection, it is not needed to tune the initial
temperature because the initial temperature is set
through a trial and error process in traditional SA. In
the sequel, tournament-selection can be effectively
replaced by SA-selection without increasing the
number of performance index evaluations per
generation, because SA allows uphill move to explore
the search space in higher temperature, and exploit the
search space accepting the best-fit solution’s
individual among offspring, parent, and best solution
in lower temperature. The flowchart of the proposed
algorithm is described in Fig. 1.
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‘ Initialize GA population at random 1

v
Generate the initial temperatures T[i]’
for each individual at random
v
Calculate the performance index
for the initial population

v

’—.( Save the current population as a paremq
2

Increase Generate the offsprings through
generation no. crossover and mutation
3 v
Find the best~fit individual among
parents, offsprings, and current best solution,
and then update best solution

’ SA-selection (offspringli], parem[l best solution, T[il} )4—

‘ Update the i-th individual and its performance index |

Tlil=TlilXcooling rate

i<population size
No

Is
the stopping criteria
satisfied?

Fig. 1. Flow chart of the proposed algorithm.

The following example shows how two parents
produce offsprings and finally select one for each
individual. We assume that genes can get integer
value in [0, 9] and the length of string is 5.

{Example)
string of parent i : 48391
string of parent j : 27916

Crossover with the crossing site between the third and
the fourth gene, and then mutate the second gene of
parent j by generating random integer value in [0,9].

String of offspring i : 483(16
String of offspring j : 259|191

Choose the surviving candidate using SA-selection
function for each individual, i and j, with T[i] and T[j],
respectively.

The proposed algorithm has the following pseudo-
code:

begin

initialize population at random

randomly generate the initial temperature 7/iJ in a

specified region

calculate the performance

population

for k=1 to stopping criterion
begin

index for the initial

save the current population as parents
Crossover
mutation
find the best-fit individual among the parents,
offsprings, and current best solution, and then,
update best solution
for i=1 to population size
begin
i-th individual=S4-selection(offspring[i],
parent[i], best solution, T[i])
update the performance index of the i-th
individual
T/[i]=T[i]xcooling rate
end
end
end

4. EMPIRICAL STUDIES

To verify the validity of the proposed algorithm, the
optimizations of test functions and fuzzy controller
are considered. The parameters of the optimization
environment are included in Table 2 and these are
fixed for all experiments; it has been found that under
these conditions the optimization was carried out
efficiently and resulted in° meaningful - results.
Obviously we do not claim that these specific values
are optimal; as a matter of fact any fine-tuning of the
collection of the parameters may be quite tedious and
somewhat counterproductive as any new problem will
undoubtedly require very intensive experimentation.
Standard form of GA with real number encoding is
used for genetic optimization, where mutation
operator generates random number in the range. The
final temperatures of the proposed algorithm
(0.99200500) Trand ) and SA (0990000100000}, -y
are different because the proposed algorithm has a
diversity of annealing schedules in the population,
where some of the final temperature will be similar to
that of SA, and SA needs very long convergence time.

Table 2. Experimental setup of the parameters of the
optimization environment; the parameter
values in the brackets ( ) are that of test

functions.
Population size 200
Maximum number
GA of generation 200(300)
Crossover rate 0.8
Mutation rate 0.1
Initial temperature 1
SA Cooling rate 0.99
Maximum number | 4 436(100,000)
of iteration
Random initial [0, 1]
Proposed temperature ’
algorithm Cooling rate 0.99
GA parameters are the same as above
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4.1. Test function problem

To show the validity and superiority of the
proposed algorithm, three benchmark test functions
[12], described in Table 3, are considered. In this
example, the performance of the proposed algorithm
is compared with that of SAGACIA algorithm [12]. In
[12], they considered low dimensional test functions,
rather than high dimensional ones, while this
experiment optimizes 30-dimensional problems
except one of them.

The results of optimization are summarized in Table
4. This table shows mean and standard deviation of
the performance index when we run each algorithm 10
times per function. For the reasonable comparison, all
the parameters are set to have the same computational
burden for each algorithm. For the low dimensional
problem (Shaffer’s £6), the two algorithms always find
the global optimum, but the proposed algorithm is
always superior to SAGACIA algorithm in high
dimensional problems (Sphere and Step). Since
SAGACIA algorithm has a possibility to missing the
best state at high temperature and mainly depends on
random search, though it is based on population-based
learning structure, it suffers from poor convergence
properties, i.e. convergence speed and accuracy to a
global optimum. As can be seen, the proposed
algorithm is superior to SAGACIA algorithm in
convergence speed and accuracy for high dimensional
problems, and finally reaches near global optimum.

4.2. Fuzzy controller design problem
In this experiment, the optimization of a fuzzy

controller for balancing an inverted pendulum system,

Table 3. Specifications of the test functions.

Name Function No. of Variable Global
variables range optimum
2.12,..2
Shaff- 520D
er’s £6 'Shafferm-os-m 2 -4, 4] 1
12
n -
Sphere spherew= % 2 10 [-5.12, 0
i=1' 5.12]
n -
Step fsteptx)= 2 integer(xi) 30 [-5.12, 180
i=1 5.12]

Table 4. The results of each algorithm for the test
function optimization.

Function | Algorithm Mean Star?dz'ird
deviation
Shaffer’s SQiACIf 1.0000 0.0000
P ose
algarithm 1.0000 0.0000
SAGACIA 9.2719 1.4716
Sphere | Proposed | 55 0.0115
algorithm
SAGACIA -157.2 4.2641
Step | Proposed |45, 0.3174
algorithm

commonly used as a benchmark test bed where a free-
falling pole is mounted on a cart, is considered here.
The control objective is to produce an appropriate
actuator force to control the motion of the cart so that
the pole can be balanced in a vertical position. Given

that no friction exists in the system, and let x; =6

and x, = 6, then the state equation can be expressed
as

).Cl =Xy,

i (M +m)gsinx; —(F + mlx% sinx)cosx;  (3)
{4/3(M +m)—m(cos x,)*}1

where M (mass of the cart) is 1.0Kg, m (mass of the
pole) is 0.1Kg, / (half length of the pole) is 0.5m, g
(gravity acceleration) is 9.8m/s”, and F is the applied
force in Newton.

The experiments for GA, SA, and the proposed
algorithm are taken into account to show the
effectiveness of the proposed algorithm. In this
experiment, the comparison between the proposed
algorithm and another hybrid algorithm is not
considered, because it has been done already in
previous complex examples.

To simplify the problem, only the control of the
pole is considered for the inverted pendulum system,
that is, the considered state is angle, 6, and angular

velocity, @, of the pole with respect to the vertical
axis [13,14]. The fuzzy controller for this system
consists of 25 possible rules that have antecedent parts
with 5 fixed triangular membership functions (fuzzy
sets) for each input variable as shown in Fig. 2, and 25
consequent part membership functions. Mamdani-type
fuzzy model [15] is used in this example. The proposed
algorithm optimizes the centers and widths of the
consequent part membership functions of the rule.

The considered form of the chromosome to
optimize the fuzzy controller is described in Fig. 3.
The centers and widths of the consequent part
membership functions are the phenotypes of the
chromosome, and they are constrained in specified
regions. We use this structure of chromosome for GA,
SA, and the proposed algorithm all together.

NB NS 0 PS PB

-1.0 0.0 1.0

Fig. 2. Fixed antecedent part membership functions
for each input variable.

| centerl ‘ width1 ‘ center2 I width2 | ‘centerZS’ width2’5;|

Fig. 3. Structure of the chromosome to optimize the
fuzzy controller of the inverted pendulum.
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In this experiment, the following performance
index is used

Q=i[eﬁ +é&1, (4)

i=1

where ¢ is the number of input-output pairs. The
performance index is evaluated by controlling the
inverted pendulum during 20s (seconds), where the
initial angle and angular velocity of the pendulum are
0.3rad (17.2°) and zero, respectively. The failure limit
of the angle of the pendulum is £0.52rad (£30.0°) and
the sampling period is 0.01s. As mentioned before, the
25 centers and widths of consequent part membership
functions are adjusted so that the optimized fuzzy
controller can generate the desired performance.

Fig. 4 shows the averaged control result (average of
10 times simulation) of the inverted pendulum
obtained by the optimized fuzzy controllers when
each algorithm is executed 10 times, independently. In
this figure, the initial state, which is the initial values
of the pendulum angle and-the angular velocity, is the
same as the optimization process, which is 0.3rad and
zero, respectively. The disturbance of 0.1rad is added
to the pendulum angle at 10.0s. The result in this
figure shows that the control performance obtained by
the proposed algorithm is superior to GA and SA in
convergence time and in disturbance rejection.

In Fig. 5, the averaged performance index in
successive generations for GA and the proposed
algorithm, and the averaged performance index in
successive iterations for SA are described. From this
figure, we can see that the performance of the
proposed algorithm is greatly enhanced in learning
speed and accuracy.

To check the generalization ability of the optimized
fuzzy controllers, the length of the pendulum that is
the most sensitive parameter is changed, while the
other parameters of the inverted pendulum are all
fixed. Fig. 6 depicts the averaged result obtained by
the 10 optimized fuzzy controllers when the pendulum
is 0.2m long. A small amount of the cart moving can

length of the pendulum=0.5m

Proposed algorithm
~~~~~~~~~ GA
SA

0.1 o

Angle[rad]

Disturbance => |},

0.0

Time[s]

Fig. 4. Averaged control result over 10 times indepen-
dent control (10 optimized fuzzy controllers)
for GA, SA, and the proposed algorithm.

Proposed algorithm
~~~~~~~~~ GA

Performance index (Q)
L

T T T
50 100 150 200
Generation no.

(a)

30

20

Performance index (Q)

t T T T
0 10000 20000 30000 40000
Iteration no

(b)

Fig. 5. Averaged performance index in successive
generations for GA and the proposed
algorithm (a), and the averaged performance
index in successive iterations for SA (b).

0.3

length of the pendulum=0.2m

Proposed algorithm

L o
s sA
=) b
g [
o |
o 0141
e b
< Disturbance =>
v‘nv.. ;.‘.‘ ‘\\
00 A

T T T
0 5 10 15 20

Timel[s]

Fig. 6. Averaged control result over 10 times indepen-
dent control (10 optimized fuzzy controllers)
for GA, SA, and the proposed algorithm when
the length of the pendulum is changed to 0.2m.

cause the pendulum to rotate because the pendulum is
rather short (higher natural frequency). Therefore, the
pendulum is balanced upright in a short time. Fig. 7
draws an example where the pendulum has a length of
1.0m. Since the pendulum is long, the pendulum has
lower natural frequency and big momentum. In this
case, it takes much more time to balance the
pendulum upright because the cart has to move for a
long distance to balance the pendulum.

Table 5 describes the settling time of each
algorithm that is required for the output to settle
within 1% of its final value, when the length of the
pendulum is changed.
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024 \}

Angle[rad]

0.0

length of the pendulum=1.0m

Proposed algorithm

rrrrr GA
o SA

Disturbance=> | }

Time[s]

Fig. 7. Averaged control result over 10 times indepen-
dent control (10 optimized fuzzy controllers)
for GA, SA, and the proposed algorithm when
the length of the pendulum is changed to 1.0m.

Table 5. 1% settling time of each algorithm when the
length of the pendulum is changed; the
values in the brackets ( ) are 1% settling time

of the disturbance.
! _ _ -

Algorithin 1=0.2m 1=0.5m =1.0m

Proposed 1.69s 2.21s 2.98s
algorithm (11.08s) (11.12s) (11.25s)

GA 2.07s 2.93s 4.88s
(11.665) (11.79s) (12.70s)

SA 341s 4.43s 5.03s
(11.99s) (12.70s) (12.75s)

5. CONCLUSIONS

We have introduced a new selection method that
combines the recombinative power of GA and
annealing schedule of SA to get the synergy effect of
GA and SA. In the proposed algorithm, tournament-
selection was effectively replaced by SA-selection
without increasing the number of performance index
evaluations per generation. The proposed method was
applied to the optimization of three test functions to
show the effectiveness by comparing with another
hybrid algorithm, ie. SAGACIA. A number of
simulations were considered with respect to the
performance of the optimized fuzzy controller for the
inverted pendulum and their generalization ability.
The experimental results showed that the proposed
algorithm is superior to GA, SA, and SAGACIA in
terms of learning speed and accuracy. Moreover, the
proposed algorithm can be effectively applied to any
other combinatorial optimization problems.
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