• Title/Summary/Keyword: future manufacturing

Search Result 1,133, Processing Time 0.024 seconds

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices (레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술)

  • Jeon, Sangheon;Park, Rowoon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.

A Study on the Certification Method for the Application of Composite Material of eVTOL Aircraft (전기동력 수직이착륙 항공기의 복합재료 적용을 위한 소재인증 방안 고찰)

  • Bae, Sung-Hwan;Cho, Sung-In;Choi, Cheong-Ho;Jeon, Seungmok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.969-976
    • /
    • 2020
  • Urban Air Mobility is attracting attention as a future innovation industry around the world, and leading industries are considering the application of composite materials for structural robustness and lightening in the designing and manufacturing new concept eVTOL aircraft. To apply composite materials to the new concept of eVTO aircraft, this paper was analyzed about composite material qualification system of FAA & EASA and institutionalized by Korea Government, including the procedures and methods, the organization to carry out the material verification for domestic conditions. The domestic composite material qualification system will not only make it easier for manufacturers of eVTOL aircraft with a new concept to apply composite materials to domestic aircraft through pre-material qualification, but also reduce the burden of material qualification within the period of type certification. In addition, domestic manufacturers of composite materials with qualified material quality and performance will be easy to enter for domestic aircraft applications and composite material manufacturers with experience in applying to aircraft will have a positive impact on overseas exports. This system will be able to promote the development eVTOL aircraft industry of a new concept and enhance international credibility of made aircraft in Korea.

A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat (머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발)

  • Choi, Nak-Hun;Oh, Jong-Seok;Ahn, Jong-Rok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • With recent developments in the Fourth Industrial Revolution, the manufacturing industry has changed rapidly. Through key aspects of Fourth Industrial Revolution super-connections and super-intelligence, machine learning will be able to make fault predictions during the foam-making process. Polyol and isocyanate are components in polyurethane foam. There has been a lot of research that could affect the characteristics of the products, depending on the specific mixture ratio and temperature. Based on these characteristics, this study collects data from each factor during the foam-making process and applies them to machine learning in order to predict faults. The algorithms used in machine learning are the decision tree, kNN, and an ensemble algorithm, and these algorithms learn from 5,147 cases. Based on 1,000 pieces of data for validation, the learning results show up to 98.5% accuracy using the ensemble algorithm. Therefore, the results confirm the faults of currently produced parts by collecting real-time data from each factor during the foam-making process. Furthermore, control of each of the factors may improve the fault rate.

A Study on the Next-generation Composite Based on the Highly Porous Carbon Nanotube Fibers (다공성 탄소나노튜브 섬유를 이용한 차세대 복합소재 연구)

  • Lee, Kyunbae;Jung, Yeonsu;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.139-146
    • /
    • 2022
  • In this study, we study fabrication methods suitable for CNT fibers-based composite. We try to fabricate a composite material using a small amount of CNT fiber preparation of woven fabrics or stitched unidirectional fabrics consisting of CNT fiber is not achievable currently. The composite materials on the basis of CNT fibers have been mainly manufactured filament winding method due to productivity issues and difficulties in composite processes. We develop a new method to prepare CNT fibers-based composite using resin infiltrated CNT fibers-based films. Because CNT fibers have numerous nanopores inside, unnecessary resin can remain after curing and decrease the mechanical properties of the composites. To remove the excess resin, pressure should be applied during the process, but the pressure applied through VaRTM was not enough to remove the excess resin. To obtain the composite with high ratio of CNT fibers, higher pressure using hot press machine and foams next to the resin-infiltrated CNT fibers are necessary. We can obtain the composite having a mass ratio of 58.5 wt% based on the new suggested method and diluted epoxy. The specific strength of the composite reach 0.525 N/tex. This study presents a new process method that can be applied to the manufacturing of CNT fiber composite materials in the future.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

The Efficiency of Social Value Among Social Enterprises in Social Progress Credit (사회성과인센티브 참여기업의 사회적 가치 효율성)

  • Wonhee, Lee;Sunghee, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.71-82
    • /
    • 2023
  • As an alternative to solving social problems, social economic actors are attracting attention as an important alternative. SPC is a private program that pays incentives according to the social performance measured by monetary value. This study measured efficiency by applying DEA to social enterprises that participated in the SPC program and analyzed the factors affecting efficiency through tobit regression. As a result of DEA analysis, it was found that 21% of social enterprises participating in SPC were efficient, but 66% needed to improve their efficiency. In the Tobit regression analysis, the efficiency was relatively low in the case of manufacturing sector, and when the square term of sales is included, the efficiency decreases as sales increase. Through this, it was estimated that external support is needed at a low level sales before crossing the critical point, and that the efficiency of social value creation increases when it grows above a certain level. Moreover, it is significant in that it combines the variables used in the analysis of traditional industrial efficiency while conducting efficiency analysis focusing on the social performance by monetary value, which is considered the most important achievement of social enterprises. It is believed that it will contribute to research related to the environment creation and the requirements of each field in creating social values for social enterprises in the future.

Comparison of Safety Culture Awareness between Client and Subcontractors' Employees according to the Experience of Accidents and Near Misses (사고와 아차사고 경험에 따른 원청과 협력업체 근로자 간 안전문화 인식 비교)

  • Kim, Dong Yeol;Park, Jae Hee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.28-34
    • /
    • 2022
  • This study analyzes the impact that accidents and near misses have on clients' and contractors' awareness of safety culture. Due to the unique characteristic of employment structure in Korea, the occurrence of accidents differs by company size, which has relevant implications for the establishment of safety culture. Attention has been drawn to the importance of the management of accidents and near misses, with safety awareness acting as a core factor. A positive effect on the prevention of accidents could be achieved by noting the difference in safety awareness between clients and contractors and suggesting an associated suitable safety management system. In support of this study, a survey was distributed to workers in the automobile manufacturing industry (May-August 2020), and data from a total of 574 workers was collected and analyzed, including 399 clients' worksers and 175 contractors' workers. The questionnaire addressed participants' experiences of accidents and near misses as well as 50 items from the Nordic Occupational Safety Climate Questionnaire. Analysis of the responses was conducted using the methods of frequency analysis, Fisher's exact test, t-test, correlation analysis, and regression analysis. The results demonstrated that clients had more experiences with accidents and near misses compared to contractors. Additional differences between clients and contractors were noted in terms of the safety culture factors of learning, communication, and trust. A correlation was observed between the experience of accidents and safety justice management: for clients and contractors who experienced accidents, safety justice management was 9.4 times higher. Furthermore, clients' and contractors' awareness of employees' commitment to safety was determined to be 28.5 times higher in those who had experienced near misses This study concludes that, in order to improve accident prevention through the management of accidents and near misses, clients must focus on overseeing safety justice management and aspects of safety culture factors, while contractors must focus efforts on managing employees' commitment to safety. In further applications, this study could provide baseline data for health and safety activities in terms of the safety culture of clients and contractors. Further study on the establishment of safety culture as related to employment structure is proposed for future research.

Analysis of Photon Spectrum for the use of Added Filters using 3D Printing Materials (3D 프린팅 재료를 이용한 X-선 부가 여과 시 광자 스펙트럼에 대한 분석)

  • Cho, Yong-In;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • 3D printing technology is being used in various fields such as medicine and biotechnology, and materials containing metal powder are being commercialized through recent material development. Therefore, this study intends to analyze the photon spectrum during added filtration using 3D printing material during diagnostic X-ray examination through simulation. Among the Monte Carlo techniques, MCNPX (ver. 2.5.0) was used. First, the appropriateness of the photon spectrum generated in the simulation was evaluated through SRS-78 and SpekCalc, which are X-ray spectrum generation programs in the diagnostic field. Second, photon spectrum the same thickness of Al and Cu filters were obtained for characterization of 3D printing materials containing metal powder. In addition, the total photon fluence and average energy according to changes in tube voltage were compared and analyzed. As a result, it was analyzed that PLA-Al required about 1.2 ~ 1.4 times the thickness of the existing Al filter, and PLA-Cu required about 1.4 ~ 1.7 times the thickness of the Cu filter to show the same degree of filtration. Based on this study in the future, it is judged that it can be utilized as basic data for manufacturing 3D printing additional filters in medical fields.