DOI QR코드

DOI QR Code

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices

레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술

  • Jeon, Sangheon (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Park, Rowoon (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Jeong, Jeonghwa (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Hong, Suck Won (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
  • 전상헌 (부산대학교 인지메카트로닉스공학과) ;
  • 박로운 (부산대학교 인지메카트로닉스공학과) ;
  • 정정화 (부산대학교 인지메카트로닉스공학과) ;
  • 홍석원 (부산대학교 인지메카트로닉스공학과)
  • Received : 2021.02.22
  • Accepted : 2021.03.30
  • Published : 2021.03.30

Abstract

Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.

본 논문에서는 레이저 유도에 의한 그래핀 합성 기술 및 이를 이용한 전기/전자 소자 제조 기술과 다양한 소자 제조 기술을 검토하였다. 최근까지 개발되고 있는 3차원 그래핀 구조 활용으로 설계된 마이크로/나노 패턴화는 효율적인 제조공정으로 인하여 많은 각광을 받고 있으며, 차세대 기판 소재로의 응용까지 다양하게 개발되고 있다. 산업에서 요구하는 실제적인 적용 연구의 예들은, 레이저의 파장대역 선택, 출력 조정 및 광 간섭 기술 응용 등의 점진적인 해결방안 논의를 통해 큰 발전 가능성을 보여주고 있다. 기존의 그래핀의 전기/전자 소자 장치로의 응용 확장성은 이미 검증된 바 있으며, 새로운 합성 방식 및 기판 적용 기술은 마이크로 패키징 기술과의 통합 운용으로, 바이오센서, 슈퍼커패시터, 다공성 전기화학 센서 등 응용분야가 매우 다양하다. 본 논문에서 소개하는 레이저 기반 그래핀 가공 기술은 가까운 미래에 휴대형 소형 전자기기 및 전자 소자에 쉽게 적용 가능하리라 사료된다.

Keywords

References

  1. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, "Graphene-based composite materials", Nature, 282 (2006).
  2. S. W. Hong, F. Du, W. Lan, S. Kim, H. S. Kim, J. A. Rogers, "Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene", Adv. Mater., 3821 (2011). https://doi.org/10.1002/adma.201101955
  3. S. Jeon, P. Han, J. Jeong, W. S. Hwang, S. W. Hong, "Highly aligned polymeric nanowire etch-mask lithography enabling the integration of graphene nanoribbon transistors", Nanomaterials, 11, 33 (2021).
  4. J. H. Lee, J. H. Shin, S. I. Lee, W. I. Park, "Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials", J. Microelectron. Packag. Soc., 27(1), 9-15 (2020).
  5. D. Yi, S. Jeon, S. W. Hong, "Selectively patterned regrowth of bilayer graphene for the self-Integrated electronics by sequential chemical vapor deposition", ACS Appl. Mater. Interfaces, 10, 40014 (2018). https://doi.org/10.1021/acsami.8b11902
  6. P. R. Somani, S. P. Somani, M. Umeno, "Planer nano-graphene from camphor by CVD", Chem. Phys. Lett., 56 (2006).
  7. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, "Large area, few-layer graphene films on arbitrary subsrates by chemical vapor deposition", Nano Lett., 30 (2008).
  8. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Rollto-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol., 574 (2010).
  9. F. Zou, H. Zhou, D. Y. Jeong, J. Kwon, S. U. Eom, T. J. Park, S. W. Hong, J. Lee, "Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets", ACS Appl. Mater. Interfaces, 9, 1343 (2017). https://doi.org/10.1021/acsami.6b15085
  10. S. H. Kang, Y. C. Shin, E. Y. Hwang, J. H. Lee, C.-S. Kim, Z. Lin, S. H. Hur, D.-W. Han, S. W. Hong, "Engineered "coffee-rings" of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells", Mater. Horiz., 6, 1066 (2019). https://doi.org/10.1039/C8MH01381K
  11. D. G. Bae, J.-E. Jeong, S. H. Kang, M. Byun, D.-W. Han, Z. Lin, H. Y. Woo, S. W. Hong, "A nonconventional approach to patterned nanoarrays of DNA strands for template-assisted assembly of polyfluorene nanowires", Small, 12, 4254 (2016). https://doi.org/10.1002/smll.201601346
  12. W. Lu, S. Liu, X. Qin, L. Wang, J. Tian, Y. Luo, A. M. Asiri, A. O. Al-Youbi, X. Sun, "High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents", J. Mater. Chem., 8775 (2012).
  13. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 228 (2010).
  14. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, "Laserinduced porous graphene films from commercial polymers", Nat. Commun., 5714 (2014).
  15. D. Kong, M. Kang, K. Y. Kim, J. Jang, J. Cho, J. B. In, H. Lee, "Hierarchically structured laser-induced graphene for enhanced boiling on flexible substrates", ACS Appl. Mater. Interfaces, 37784 (2020). https://doi.org/10.1021/acsami.0c11402
  16. D. T. Kuhnel, J. M. Rossiter, C. F. J. Faul, "Laser-scribed graphene oxide electrodes for soft electroactive devices", Adv. Mater. Technol., 4, 1800232 (2019). https://doi.org/10.1002/admt.201800232
  17. Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T. K. Hsiai, Z. Li, W. Gao, "A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat", Nat. Biotechnol., 217 (2020).
  18. M. G. Stanford, C. Zhang, J. D. Fowlkes, A. Hoffman, I. N. Ivanov, P. D. Rack, J. M. Tour, "High-resolution laser-induced graphene. Flexible electronics beyond the visible limit", ACS. Appl. Mater. Interfaces, 10902 (2020).
  19. L. Huang, J. Su, Y. Song, R. Ye, "Laser-induced graphene: en route to smart sensing", Nano-Micro Lett., 1 (2020).
  20. L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N. D. Kim, Q. Zhong, Y. Yang, H. Fei, G. Ruan, J. M. Tour, "Highperformance pseudocapacitive microsupercapacitors from laser-induced graphene", Adv. Mater., 838 (2016).
  21. T. Beduk, A. A. Lahcen, N. Tashkandi, K. N. Salama, "Onestep electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor", Sensor. Actuator. B Chem., 314 (2020).
  22. Y. Zhou, Q. L. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, K. P. Loh, "Microstructuring of graphene oxide nanosheets using direct laser writing", Adv. Mater., 67 (2010).
  23. D. Joo, S. Yoon, J. Kim, W.-T. Park, "Carbon strain sensor using Nd: YAG laser Direct Writing", J. Microelectron. Packag. Soc., 25(1), 35-40 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.035
  24. C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, "Rollable, stretchable, and reconfigurable graphene hygroelectric generators", Adv. Mater., 1805705, (2019). https://doi.org/10.1002/adma.201805705
  25. L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, H. B. Sun, "Laser-mediated programmable N doping and simultaneous reduction of graphene oxides", Adv. Opt. Mater., 120 (2014).
  26. D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, E. Kymakis, "Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices", Adv. Funct. Mater., 2213 (2015).
  27. S. P. Singh, Y. Li, J. Zhang, J. M. Tour, C. J. Arnusch, "Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes", ACS Nano, 289 (2018).
  28. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan, "Direct laser writing of micro-supercapacitors on hydrated graphite oxide films", Nat. Nanotechnol., 496 (2011).
  29. M. R. Bobinger, F. J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodriguez, A. Rivadeneyra, "Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates", Carbon, 116 (2019).
  30. X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, T. -L. Ren, "A spectrally tunable all-graphene-based flexible field-effect light-emitting device", Nat. Commun., 7767 (2015). https://doi.org/10.1038/ncomms8767
  31. H. Xiao, Z. S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H. M. Cheng, X. Bao, "One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density", ACS Nano, 7284 (2017).
  32. R. Park, H. Kim, S. Lone, S. Jeon, Y. W. Kwon, B. Shin, S. W. Hong, "One-step laser patterned highly uniform reduced graphene oxide thin films for circuit-enabled tattoo and flexible humidity sensor application", Sensors, 1857 (2018).
  33. Y. Zhao, Q. Han, Z. H. Cheng, L. Jiang, L. T. Qu, "Integrated graphene systems by laser irradiation for advanced devices", Nano Today, 14 (2017).
  34. Y. Q. Liu, Y. L. Zhang, Y. Liu, H. B. Jiang, D. D. Han, B. Han, J. Feng, H. B. Sun, "Surface and interface engineering of graphene oxide films by controllable photoreduction", Chem. Rec., 1244 (2016).
  35. Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, F. S. Xiao, "Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction", Nano Today, 15 (2010).
  36. R. Ye, D. K. James, J. M. Tour, "Laser-induced graphene: from discovery to translation", Adv. Mater., 1803621 (2019). https://doi.org/10.1002/adma.201803621
  37. L. Cao, S. Zhu, B. Pan, X. Dai, W. Zhao, Y. Liu, W. Xie, Y. Kuang, X. Liu, "Stable and durable laser-induced graphene patterns embedded in polymer substrates", Carbon, 85 (2020).
  38. W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, "Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene", Small, 1702249 (2018). https://doi.org/10.1002/smll.201702249
  39. S.-H. Lee, K.-Y. Kim, J.-R. Yoon, "Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors", NPG Asia Mater., 1 (2020).
  40. S. Kasap, I. I. Kaya, S. Repp, E. Erdem, "Superbat: batterylike supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects", Nanoscale Adv., 2586 (2019). https://doi.org/10.1039/c9na00199a
  41. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L.G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, "Laserinduced porous graphene films from commercial polymers", Nat. Commun., 5(1), 5714 (2014). https://doi.org/10.1038/ncomms6714
  42. Y.-Q. Liu, Z.-D. Chen, J.-W. Mao, D.-D. Han, X. Sun, "Laser fabrication of graphene-based electronic skin", Front Chem., 7, 461, (2019). https://doi.org/10.3389/fchem.2019.00461
  43. H. Tian, Y. Yang, D. Xie, Y.-L. Cui, W.-T. Mi, Y. Zhang, T.-L. Ren, "Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices", Sci. Rep., 4, 3598 (2014). https://doi.org/10.1038/srep03598
  44. M. Gamil, H. Nageh, I. Bkrey, S. Sayed, A. M. R. Fath ElBab, K. Nakamura, O. Tabata, A. A. El-Moneim, "Graphenebased strain gauge on a flexible substrate" Sens. Mater., 26, 9, 699-709 (2014).
  45. B. Sun, R. N. McCay, S. Goswami, Y. Xu, C. Zhang, Y. Ling, J. Lin, Z. Yan, "Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugartemplated elastomer sponges", Adv. Mater., 30, 1804327 (2018). https://doi.org/10.1002/adma.201804327
  46. H. Tian, H. Y. Chen, T. L. Ren, C. Li, Q. T. Xue, M. A. Mohammad, C. Wu, Y. Yang, H. S. Wong, "Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology", Nano Lett., 14, 3214 (2014). https://doi.org/10.1021/nl5005916
  47. R. D. Rodriguez, M. Bing, A. Ruban, S. Pavlov, A. A. Hamry, V. Prakash, M. Khan, G. Murastov, A. Mukherjee, Z. Khan, S. Shah, A. Lipovka, O. Kanoun, S. K. Mehta, E. Sheremet, "Reduced graphene oxide nanostructures by light: going beyond the diffraction limit", J. Phys. Conf. Ser., 1092, 012124 (2018). https://doi.org/10.1088/1742-6596/1092/1/012124
  48. L.-Q. Tao, H. Tian, Y. Liu, Z.-Y. Ju, Y. Pang, Y.-Q. Chen, D.-Y. Wang, X.-G. Tian, J.C. Yan, N.-Q. Deng, Y. Yang, T.-L. Ren, "An intelligent artificial throat with sound-sensing ability based on laser induced graphe", Nat. Commun., 8, 14579 (2017). https://doi.org/10.1038/ncomms14579
  49. V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, R. B. Kaner, "Patterning and electronics tuning of laser scribed graphene for flexible all-carbon devices", ACS Nano, 6, 1395 (2012). https://doi.org/10.1021/nn204200w
  50. R. Song, X. Zhao, Z. Wang, H. Fu, K. Han, W. Qian,S. Wang, J. Shen, B. Mao, D. He, "Sandwiched graphene clad laminate: a binder-free flexible printed circuit board for 5G antenna application", Adv. Eng. Mater., 22, 2000451 (2020). https://doi.org/10.1002/adem.202000451
  51. B. Han, Y.-L. Zhang, L. Zhu, X.-H. Chen, Z.-C. Ma, X.-L. Zhang, J.-N. Wang, W. Wang, Y.-Q. Liu, Q.-D. Chen, H.-B. Sun, "Direct laser scribing of AgNPs@RGO biochip as a reusable SERS sensor for DNA detectionSens", Sens. Actuators B Chem., 270, 500-507 (2008). https://doi.org/10.1016/j.snb.2018.05.043
  52. N. Q. Deng, H. Tian, Z. Y. Ju, H. M. Zhao, C. Li, M. A. Mohammad, L. Q. Tao, Y. Pang, X. F. Wang, T. Y. Zhang, Y. Yang, T. L. Ren, "Tunable graphene oxide reduction and graphene patterning at roomtemperature on arbitrary substrates", Carbon, 109, 173 (2016). https://doi.org/10.1016/j.carbon.2016.08.005
  53. L. X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J. M. Tour, "Laser-induced graphene fibers", Carbon, 126, 472 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
  54. Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas, D. Kuzum, "Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing", Sci. Rep., 6, 33526 (2016). https://doi.org/10.1038/srep33526
  55. S. Luo, P. T. Hoang, T. Li, "Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays", Carbon, 96, 552 (2016).
  56. C. Fenzl, P. Nayak, T. Hirsch, O. S. Wolfbeis, H. N. Alshareef, A. J. Baeumner, "Laser-scribed graphene electrodes for aptamer-based biosensing", ACS Sens., 2, 616 (2017). https://doi.org/10.1021/acssensors.7b00066
  57. R. R. A. Soares, R. G. Hjort, C. C. Pola, K. Parate, E. L. Reis, N. F. F. Soares, E. S. McLamore, J. C. Claussen, C. L. Gomes, "Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of salmonella enterica in chicken broth", ACS sensors, 5, 1900 (2020). https://doi.org/10.1021/acssensors.9b02345
  58. Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang,T. K. Hsiai, Z. Li, W. Gao, "A laser-engraved wearable sensor forsensitive detection of uric acid and tyrosine in sweat", Nat. Biotechnol., 38, 217-224 (2020). https://doi.org/10.1038/s41587-019-0321-x
  59. Z. Peng, J. Lin, R. Ye, E. L. G. Samuel, J. M. Tour, "Flexible and stackable laser induced graphene supercapacitors", ACS Appl. Mater. Interfaces, 7, 3414 (2015). https://doi.org/10.1021/am509065d
  60. M. F. El-Kady, M. Ihns, M. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, A. T. Lech, R. B. Kaner, "Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage", Proc. Natl. Acad. Sci. U. S. A., 112, 4233 (2015). https://doi.org/10.1073/pnas.1420398112
  61. X. Zang, C. Shen, Y. Chu, B. Li, M. Wei, J. Zhong, M. Sanghadasa, L. Lin, "Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics", Adv. Mater., 30, 1800062 (2018). https://doi.org/10.1002/adma.201800062
  62. Y.-C. Qiao, Y.-H. Wei, Y. Pang, Y.-X. Li, D.-Y. Wang, Y.-T. Li, N.-Q. Deng, X.-F. Wang, H.-N. Zhang, Q. Wang, Z. Yang, L.-Q. Tao, H. Tian, Y. Yang, T.-L. Ren, "Graphene devices based on laser scribing technology", Jpn. J. Appl. Phys., 57, 04FA01, (2018). https://doi.org/10.7567/JJAP.57.04FA01
  63. J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, "Laser Direct Writing of a High-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics", ACS Appl. Mater. Interfaces, 10, 23987 (2018). https://doi.org/10.1021/acsami.8b07373
  64. J. Edberg, R. Brooke, O. Hosseinaei, A. Fall, K. Wijeratne, M. Sandberg, "Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics", npj Flex. Electron., 4, 17 (2020). https://doi.org/10.1038/s41528-020-0080-2
  65. T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, Y. Xu, "Laser-assisted printed flexible sensors: a review", Sensors, 19, 1462 (2019). https://doi.org/10.3390/s19061462
  66. Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas, D. Kuzum, "Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing", Sci. Rep., 6, 33526 (2016). https://doi.org/10.1038/srep33526
  67. A.A. Lahcen, S. Rauf, T. Beduk, C. Durmus, A. Aljedaibi, S. Timur, H.N. Alshareef, A. Amine, O.S. Wolfbeis, K.N. Salama, "Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review", Biosens. Bio-electron., 168, 112565 (2020). https://doi.org/10.1016/j.bios.2020.112565
  68. R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang, Z. You, "Laser fabrication of graphene-based flexible electronics", Adv. Mater., 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981