• Title/Summary/Keyword: future Internet

Search Result 2,267, Processing Time 0.026 seconds

Optimizing User Experience While Interacting with IR Systems in Big Data Environments

  • Minsoo Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.104-110
    • /
    • 2023
  • In the user-centered design paradigm, information systems are created entirely tailored to the users who will use them. When the functions of a complex system meet a simple user interface, users can use the system conveniently. While web personalization services are emerging as a major trend in portal services, portal companies are competing for a second service, such as introducing 'integrated communication platforms'. Until now, the role of the portal has been content and search, but this time, the goal is to create and provide the personalized services that users want through a single platform. Personalization service is a login-based cloud computing service. It has the characteristic of being able to enjoy the same experience at any time in any space with internet access. Personalized web services like this have the advantage of attracting highly loyal users, making them a new service trend that portal companies are paying attention to. Researchers spend a lot of time collecting research-related information by accessing multiple information sources. There is a need to automatically build interest information profiles for each researcher based on personal presentation materials (papers, research projects, patents). There is a need to provide an advanced customized information service that regularly provides the latest information matched with various information sources. Continuous modification and supplementation of each researcher's information profile of interest is the most important factor in increasing suitability when searching for information. As researchers' interest in unstructured information such as technology markets and research trends is gradually increasing from standardized academic information such as patents, it is necessary to expand information sources such as cutting-edge technology markets and research trends. Through this, it is possible to shorten the time required to search and obtain the latest information for research purposes. The interest information profile for each researcher that has already been established can be used in the future to determine the degree of relationship between researchers and to build a database. If this customized information service continues to be provided, it will be useful for research activities.

A Study on the Energy Platform to Reduce Carbon Emissions (탄소배출 저감을 위한 에너지 플랫폼 연구)

  • Beom-seok Cha;Hyung-Jin Moon;Woojin Wi;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 2024
  • This manuscript proposes an artificial intelligence-based(AI) energy platform system that efficiently use existing energy than creating new energy than creating new energy sources. To this end, it collects public information data portal and statistics data portal and data emissions, including energy usage and greenhouse gas emissions, including energy consumption and greenhouse gas emissions.In addition, it provides strong security and personal information protection functions to overcome the limit of existing energy platform. Through the built energy platform, improving power supply and user convenience of users and users to contribute to global warming issues.In this paper, the contents to implement the contents of the system, and improvement direction from the future completion and improvement direction.

Practical suggestions for development of 『manned & unmanned complex combat performance plan』 (drone operation) (『유·무인복합전투수행방안』 발전을 위한 현실적 제언(드론 운용))

  • Cheol-jung Kim;Bo-Ram, Kim;Min-Youn Kim;Jae-Seok Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.137-146
    • /
    • 2024
  • drones are used in a variety of fields, including business, leisure, lifesaving, and war. Various research using drones is being conducted in the military. In particular, the use of drones in 『Manned-Unmanned Complex combat performance plan』, powered by various unmanned vehicles deployed in the Army TIGER system, is expected to be a major factor realizing the Army's future combat performance that minimizes damage to ally combat troops while causing maximum damage to the enemy. As the deployment of various systems progresses, combat performance methods utilizing each system are evolving, but there is a lack of research to identify and resolve limitations in the perspective of unmanned vehicle operators. Based on the Ukrainian military's FPV drone combat case, we would like to make suggestions from the operator's perspective on overcoming perspective limitations through the introduction of FPV and the designation of military drone frequency.

A Review of Cross-Cultural Design to Improve User Engagement for Learning Management System

  • Farhan Hanis Muhmad Asri;Dalbir Singh;Zulkefli Mansor;Helmi Norman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.397-419
    • /
    • 2024
  • Online learning has become a widespread practice for students and teachers in acquiring and delivering knowledge. Education platforms have become prominent in the 21st century with the evolution of technology and the accessibility to online learning. As a result, various learning management systems (LMSs) have been introduced to facilitate online interaction between users. For instance, communication between students and teachers at school. However, there is a need to emphasise user engagement in LMS to enhance the online learning experience amongst students since the design of LMS affects user engagement. This study utilised a systematic literature review (SLR) that examined 74 articles published between 2014 and 2023, focusing on cross-cultural design (CCD), user-centred design (UCD), and usability in LMS design. This study aimed to review CCD and its association with UCD, user interfaces (UI), and user experience (UX) in the context of LMS. CCD has been introduced as an approach to design that embraces different cultures, languages, and social contexts, while UCD plays a significant role in defining user engagement for LMS. All elements in CCD and UCD help create a better user experience for LMS. Besides, this study reviewed the usability of selected LMS to give insights to developers in creating a positive user engagement. An insight into cultural factors that influence the usability of LMS has revealed their value for LMS design, such as the UI/UX elements. Initially, this study may guide future researchers in improving education quality by emphasising CCD and LMS usability, which can enhance user engagement.

Identification of Demand Type Differences and Their Impact on Consumer Behavior: A Case Study Based on Smart Wearable Product Design

  • Jialei Ye;Xiaoyou He;Ziyang Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1101-1121
    • /
    • 2024
  • Thorough understanding of user demands and formulation of product development strategies are crucial in product design, and can effectively stimulate consumer behavior. Scientific categorization and classification of demands contribute to accurate design development, design efficiency, and success rates. In recent years, e-commerce has become important consumption platforms for smart wearable products. However, there are few studies on product design and development among those related to promoting platform product services and sales. Meanwhile, design strategies focusing on real consumer needs are scarce among smart wearable product design studies. Therefore, an empirical consumer demand analysis method is proposed and design development strategies are formulated based on a categorized interpretation of demands. Using representative smart bracelets from wearable smart products as a case, this paper classifies consumer demands with three methods: big data semantic analysis, KANO model analysis, and satisfaction analysis. The results reveal that analysis methods proposed herein can effectively classify consumer demands and confirm that differences in consumer demand categories have varying impacts on consumer behavior. On this basis, corresponding design strategies are proposed based on four categories of consumer demands, aiming to make product design the leading factor and promote consumer behavior on e-commerce platforms. This research further enriches demand research on smart wearable products on e-commerce platforms, and optimizes products from a design perspective, thereby promoting consumption. In future research, different data analysis methods will be tried to compare and analyze changes in consumer demands and influencing factors, thus improving research on impact factors of product design in e-commerce.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Development of proton test logic of RFSoC and Evaluation of SEU measurement (RFSoC의 양성자 시험 로직 개발 및 SEU 측정 평가)

  • Seung-Chan Yun;Juyoung Lee;Hyunchul Kim;Kyungdeok Yu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 2024
  • In this paper, we present the implementation of proton beam irradiation test logic and test results for Xilinx's RFSoC FPGA. In addition to the FPGA function, RFSoC is a chip that integrates CPU, ADC, and DAC and is attracting attention in the defense and space industries aimed at reducing the size of the chip. In order to use these chips in a space environment, an analysis of radiation effects was required and radiation mitigation measures were required. Through the proton irradiation test, the logic to measure the radiation effect of RFSoC was designed. Logic for comparing values stored in memory with normal values was implemented, and protons were irradiated to RFSoC to measure SEU generated in the block memory area. To alleviate the occurrence of SEU in other areas, TMR and SEM were applied and designed. Through the test results, we intend to verify this test configuration and establish an environment in which logic design for satellites can be verified in the future.

Case Study on Artificial Intelligence and Risk Management - Focusing on RAI Toolkit (인공지능과 위험관리에 대한 사례 연구 - RAI Toolkit을 중심으로)

  • Sunyoung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.115-123
    • /
    • 2024
  • The purpose of this study is to contribute to how the advantages of artificial intelligence (AI) services and the associated limitations can be simultaneously overcome, using the keywords AI and risk management. To achieve this, two cases were introduced: (1) presenting a risk monitoring process utilizing AI and (2) introducing an operational toolkit to minimize the emerging limitations in the development and operation of AI services. Through case analysis, the following implications are proposed. First, as AI services deeply influence our lives, the process are needed to minimize the emerging limitations. Second, for effective risk management monitoring using AI, priority should be given to obtaining suitable and reliable data. Third, to overcome the limitations arising in the development and operation of AI services, the application of a risk management process at each stage of the workflow, requiring continuous monitoring, is essential. This study is a research effort on approaches to minimize limitations provided by advancing artificial intelligence (AI). It can contribute to research on risk management in the future growth and development of the related market, examining ways to mitigate limitations posed by evolving AI technologies.

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.

Multi-modal Pedestrian Trajectory Prediction based on Pedestrian Intention for Intelligent Vehicle

  • Youguo He;Yizhi Sun;Yingfeng Cai;Chaochun Yuan;Jie Shen;Liwei Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1562-1582
    • /
    • 2024
  • The prediction of pedestrian trajectory is conducive to reducing traffic accidents and protecting pedestrian safety, which is crucial to the task of intelligent driving. The existing methods mainly use the past pedestrian trajectory to predict the future deterministic pedestrian trajectory, ignoring pedestrian intention and trajectory diversity. This paper proposes a multi-modal trajectory prediction model that introduces pedestrian intention. Unlike previous work, our model makes multi-modal goal-conditioned trajectory pedestrian prediction based on the past pedestrian trajectory and pedestrian intention. At the same time, we propose a novel Gate Recurrent Unit (GRU) to process intention information dynamically. Compared with traditional GRU, our GRU adds an intention unit and an intention gate, in which the intention unit is used to dynamically process pedestrian intention, and the intention gate is used to control the intensity of intention information. The experimental results on two first-person traffic datasets (JAAD and PIE) show that our model is superior to the most advanced methods (Improved by 30.4% on MSE0.5s and 9.8% on MSE1.5s for the PIE dataset; Improved by 15.8% on MSE0.5s and 13.5% on MSE1.5s for the JAAD dataset). Our multi-modal trajectory prediction model combines pedestrian intention that varies at each prediction time step and can more comprehensively consider the diversity of pedestrian trajectories. Our method, validated through experiments, proves to be highly effective in pedestrian trajectory prediction tasks, contributing to improving traffic safety and the reliability of intelligent driving systems.