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Abstract 

 
The prediction of pedestrian trajectory is conducive to reducing traffic accidents and protecting 
pedestrian safety, which is crucial to the task of intelligent driving. The existing methods 
mainly use the past pedestrian trajectory to predict the future deterministic pedestrian 
trajectory, ignoring pedestrian intention and trajectory diversity. This paper proposes a multi-
modal trajectory prediction model that introduces pedestrian intention. Unlike previous work, 
our model makes multi-modal goal-conditioned trajectory pedestrian prediction based on the 
past pedestrian trajectory and pedestrian intention. At the same time, we propose a novel Gate 
Recurrent Unit (GRU) to process intention information dynamically. Compared with 
traditional GRU, our GRU adds an intention unit and an intention gate, in which the intention 
unit is used to dynamically process pedestrian intention, and the intention gate is used to 
control the intensity of intention information. The experimental results on two first-person 
traffic datasets (JAAD and PIE) show that our model is superior to the most advanced methods 
(Improved by 30.4% on MSE0.5s and 9.8% on MSE1.5s for the PIE dataset; Improved by 15.8% 
on MSE0.5s and 13.5% on MSE1.5s for the JAAD dataset). Our multi-modal trajectory prediction 
model combines pedestrian intention that varies at each prediction time step and can more 
comprehensively consider the diversity of pedestrian trajectories. Our method, validated 
through experiments, proves to be highly effective in pedestrian trajectory prediction tasks, 
contributing to improving traffic safety and the reliability of intelligent driving systems. 
 
Keywords: Pedestrian trajectory prediction, Pedestrian Intention, Gate Recurrent Unit 
(GRU), Intelligent Driving. 
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  1. Introduction 

In the past few years, we have witnessed significant progress in assisted driving and 
autonomous driving systems [1-5]. With the development of image processing technology [6-
7], autonomous driving technology has achieved success in the field of pedestrian detection 
[8-10]. However, compared to pedestrian detection, research on pedestrian trajectory 
prediction is relatively limited, and this task is highly challenging. Predicting pedestrian 
movements, especially the trajectory at intersections, is essential to ensure pedestrian safety. 
By predicting the pedestrian trajectory [11-14], the intelligent vehicle can plan a safe path 
while driving to avoid path conflict between the intelligent vehicles and pedestrians. 

Most of the previous pedestrian trajectory prediction methods assume that the future 
pedestrian trajectory is deterministic [15-18] and then predict the future trajectory based on 
the past pedestrian trajectory. However, in the process of walking, the pedestrian trajectory is 
uncertain. Even if the observation sequence of pedestrians has the same trajectory, pedestrians 
will also have multiple reasonable trajectories in the future. Early prediction methods ignored 
the diversity of pedestrian trajectories. Compared with the multi-modal trajectory prediction 
model, the deterministic trajectory prediction model has a larger error in predicting future 
trajectory distribution, so the multi-modal method is more suitable for predicting pedestrian 
trajectory. A recent work [19] adopted a multimodal approach in pedestrian trajectory 
prediction, but it only involved simple modeling based on the pedestrian's past trajectory. This 
method takes the pedestrian's past trajectory as input, generates multimodal results through 
Conditional Variational Autoencoder (CVAE), and then generates multiple trajectories using 
Recurrent Neural Network (RNN). Methods based on past trajectories have been proven to 
predict pedestrian trajectories [16,20,21], unfortunately, the past trajectory of the traveler may 
not reflect his future action goals. For example, students on the roadside may go to the road to 
check whether the school bus is coming. The trajectory-based models will assume that students 
will cross the road for this scenario. This problem can be improved by introducing pedestrian 
intentions. When pedestrians move, they will have their intentions, and the intentions will be 
used to plan the action route. The pedestrian intentions reflect the goal of pedestrians crossing 
the road, which is important for predicting the pedestrian trajectory. Another recent work [17] 
utilized pedestrian intent information in predicting pedestrian trajectories, but it assumed that 
pedestrian trajectories are deterministic and did not consider the variability of pedestrian 
trajectories.  

Most pedestrian trajectory prediction methods are based on a bird-eye view [21-24]. These 
works simulate the bird-eye view by projecting self-centered video frames onto the ground. 
However, many roads are irregular, which will affect the accuracy of the projection, thus 
affecting the accurate prediction of pedestrian positions. The method [25] proposed to predict 
pedestrian trajectory in three-dimensional space requires expensive LIDAR equipment to 
obtain three-dimensional coordinates of the real scene. Methods from the first-person 
perspective not only better suit the scenarios of autonomous driving but also can reduce costs. 
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Fig. 1. The actual pedestrian trajectory is represented by a dark blue box, and the predicted trajectory 
is represented by a green box. Our goal is to predict the future trajectory of pedestrian through his past 

trajectory and intention.  
 

In this paper, we propose a multi-modal goal-conditioned pedestrian trajectory prediction 
model based on pedestrian intention from the first-person perspective. Fig.1 is a simple 
example of our model. Given the pedestrian's past trajectory within the deep blue box, we can 
predict the trajectory for the next few seconds based on the past trajectory and intention. We 
simultaneously utilize the pedestrian’s past trajectory and intention to predict multiple future 
trajectories. Our model consists of three main modules: (1) Intention estimation module that 
estimates and generates intention values for pedestrians. (2) Sample generation module that 
learns the distribution of future trajectories based on past pedestrian trajectories through a 
random latent variable in CVAE. This module will also generate multiple samples and estimate 
the endpoint of the pedestrian's future trajectory based on pedestrian intention. (3) Trajectory 
generation module that predicts pedestrian future trajectories based on the samples and the 
endpoint of pedestrian trajectories generated by the sample generation module and the 
intention values generated by the intention estimation module. In the trajectory generation 
module, to better utilize pedestrian intention, we propose a novel GRU (Intention GRU) to 
dynamically analyze pedestrian intention. Pedestrian intention changes constantly due to 
environmental influences. To address this challenge, our Intention GRU adds an intention unit 
based on traditional GRU, which can analyze the pedestrian intention at each time step. We 
also designed an intention gate for Intention GRU to control the extent to which the pedestrian 
position changes with the change in pedestrian intent. For models based on past outputs, their 
errors increase over time. To address this issue, we applied a bidirectional trajectory predictor. 
It consists of Intention GRUs in both forward and backward directions. When predicting 
pedestrian trajectories, we first estimate the endpoint of the pedestrian’s trajectory (not the 
endpoint of our model) and then combine the predicted trajectories in both directions to predict 
the final pedestrian trajectory. 

In summary, existing pedestrian trajectory prediction methods face two key issues: firstly, 
they often assume determinism in future trajectories, overlooking the diversity of pedestrian 
trajectories; secondly, most of them rely solely on past trajectory information, neglecting the 
pedestrian intention and dynamic characteristics of intention. To address these challenges, we 
propose a multi-modal goal-conditioned pedestrian trajectory prediction model based on 
pedestrian intention. Unlike methods that generate deterministic predictions, our approach 
takes into account the diversity of trajectory outcomes. Additionally, we introduce the 
“Intention Gated Recurrent Unit” (Intention GRU) to analyze pedestrian intention at each time 
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step. 
For this paper, the main contributions of our work are as follows: 

 We propose Intention GRU to learn the pedestrian intention at every time step during 
prediction so that the pedestrian intention information can dynamically influence the 
future pedestrian trajectory. 

 When conducting multi-modal goal-conditioned trajectory pedestrian prediction, we 
simultaneously utilize past pedestrian trajectory and pedestrian intention to improve the 
accuracy of endpoint estimation for pedestrian trajectory, ultimately improving the 
performance of the trajectory prediction model. 

 The experimental results show that our model has reached an advanced level on two first-
person datasets. 

2. Related Works 
Pedestrian detection, pedestrian tracking, and pedestrian trajectory prediction are three crucial 
tasks in image processing [26-28] related to pedestrians, where pedestrian detection and 
tracking form the foundation for pedestrian trajectory prediction. Pedestrian detection enables 
computers to locate pedestrians in images or videos, typically implemented using target 
detection algorithms, such as Convolutional Neural Networks (CNNs) based on deep learning 
methods. Recent advancements, as demonstrated in [29,30], have achieved state-of-the-art 
performance in this area. Pedestrian tracking involves continuously tracking the detected 
positions of pedestrians in consecutive images or videos and associating these positions. 
Target tracking algorithms, including those based on Kalman filtering, correlation filtering, or 
deep learning, can be employed for pedestrian tracking. The most advanced methods currently 
available include [31-33]. After pedestrian detection and tracking, the computer can obtain the 
position and past trajectory of pedestrians, and then predict their future trajectory. Currently, 
most methods use recurrent neural networks (RNN) to encode pedestrian past trajectories and 
then decode them to generate future trajectories. For multi-modal trajectory prediction, the 
current method is achieved through Conditional Variational Autoencoder CVAE [34,35]. Lee 
et al. [36] first used CVAE for multi-modal trajectory prediction. They combine CVAE with 
RNN encoding to generate random prediction hypotheses to deal with multi-modal targets in 
future predictions. Choi et al. [37] proposed a CVAE model with LSTM, which is an 
interactive perception model for vehicle motion prediction. The model predicts future 
movement with multi-modal distribution based on the confidence value of vehicle mobility. 
Salzmann et al. [38] extended Trajectron and proposed a modular recursive model 
Trajectron++, combining heterogeneous data of previous trajectory information, generating 
future condition predictions consistent with dynamic constraints, and generating full 
probability distributions. Yao et al. [19] divided CVAE target trajectories into parametric 
distribution and nonparametric distribution, designed nonparametric models (BiTraP-NP) and 
parametric models (BiTraP-GMM), respectively, and proved that the selection of potential 
variables affects the diversity of target distribution. Wang et al. [15] designed a SGNet, which 
includes an encoder module to capture historical information, a stepwise target estimator to 
predict future continuous targets, and a decoder module to predict future trajectories. SGNet 
predicts both long-term and short-term targets to better capture historical observations. Zhou 
et al. [39] proposed a multi-modal trajectory prediction method. In this approach, CVAE is 
employed to generate multi-modal trajectories, and GAN is used for adversarial training. They 
utilized spatiotemporal graphs to encode pedestrian social interactions and employed RNN to 
capture the temporal dependencies of evolving patterns. However, their research is only based 
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on the past trajectories of pedestrians, ignoring other information about pedestrians, such as 
their intentions. 

In practice, once a pedestrian is detected, the computer can obtain pedestrian data through 
image processing programs [40,41], so we can extract information that is conducive to 
predicting the future trajectory from the previously obtained data, such as pedestrian intention. 
Intention estimation provides an intuitive understanding of pedestrian behavior, which is 
crucial for predicting pedestrian trajectory. Zhang et al. [42] analyzed pedestrian crossing 
intentions at red lights by examining changes in key points of the pedestrian's body and facial 
expressions. They employed four machine learning models to predict pedestrians' intentions 
to cross the red light. Zhou et al. [43] proposed a method for identifying and predicting 
pedestrian crossing intentions in obstructed visual fields. They constructed a specialized 
LSTM to integrate pedestrian posture, speed, interaction status features, and blind-state 
features to estimate pedestrian intentions. Ahmed et al. [44] introduced a multi-scale 
pedestrian intent prediction method based on 2D pose estimation and LSTMs. 2D pose 
estimation analyzes changes in pedestrian joints over time, and LSTMs predict pedestrian 
intentions based on the spatiotemporal information provided by pose estimation. Moreno et al. 
[45] introduced a random forest classifier to estimate pedestrian crossing intentions. They 
utilized features such as pedestrian position, speed, and heading. In estimating pedestrian 
intentions, they not only analyzed whether pedestrians were crossing but also provided a 
quantitative confidence level. 

Current research on multimodal trajectory prediction ignored pedestrian intention when 
generating multi-modal trajectories. Methods regarding pedestrian intentions have not taken 
into account the characteristics of the temporal changes in pedestrian intentions. We propose 
a multimodal trajectory prediction model based on pedestrian intention. To estimate the 
intention of pedestrians at each prediction time step, we designed an Intention GRU based on 
Gate Recurrent Unit (GRU), which can simultaneously process intention information and 
pedestrian past trajectory information. Specifically, it added an intention unit and an intention 
gate based on a standard GRU to learn pedestrian intention at each time step. 

3. Methodology 
We first introduce our proposed Intention GRU in Section 3.1 and subsequently introduce our 
multi-modal pedestrian trajectory prediction model that applied Intention GRU in Section 3.2. 

3.1 Intention GRU 
The intention information of pedestrians is highly related to the future pedestrian trajectory. 
To make better use of the intention information, we propose additional intention units and 
intention gates. The standard GRU and our Intention GRU structure are shown in Fig. 2.   
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Fig. 2. (a) GRU. (b) Intention GRU. Where σ and tanh are the sigmoid activation function and tanh 
activation function respectively. 

 
The standard GRU includes reset gate 𝑟𝑟𝑡𝑡 and update gate 𝑧𝑧𝑡𝑡, in addition, our Intention GRU 

also includes an intention unit 𝑖𝑖𝑡𝑡  and an intention gate 𝑔𝑔𝑡𝑡 . In the two GRUs, how much 
historical information about the state at the previous time of reset gate control is written to the 
current candidate set 𝑐𝑐𝑡𝑡. The update gate controls how much current memory is saved to the 
current time step, while our intention unit and intention gate are used to process the intention 
information. In mathematics, we use 𝑔𝑔𝑡𝑡 ∙ 𝑖𝑖𝑡𝑡 to dynamically change the output ℎ𝑡𝑡. Our method 
makes the intention information not simply connect with the past track information of 
pedestrians but make full use of it. To better understand intention units and intention gates, we 
will introduce their details as follows: 
Intention Gate. The future location of a pedestrian is related to his intention, and when he 
wants to cross the road, his position will change in the future. We propose an intention gate to 
control the influence of pedestrian intentions on their future location changes. We use a 
sigmoid activation function to realize this idea 𝑔𝑔𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑔𝑔) . Once the 
intention value is obtained, the intention gate will analyze its reliability in each time step to 
make robust to noisy intention data. In this way, intention units can better utilize intention 
information. 
Intention Cell. Intention information has a great impact on its future trajectory. However, 
pedestrian intentions are not static but change from time to time. It is not reasonable to use a 
fixed intention value. For example, when a pedestrian encounters a speeding vehicle crossing 
the road, he will stop crossing. Therefore, we propose an intention unit to deal with changing 
pedestrian intentions instead of using a fixed intention value. The initial input of the intention 
unit is the intention value from the intention estimation module. Then the intention state will 
be updated each time step by 𝑖𝑖𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑡𝑡 +𝑊𝑊𝑖𝑖𝑡𝑡−1 +𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖), and it is used as the 
input of the intention unit of the next GRU neuron. 
Recurrent State. Mathematically, our Intention GRU is formulated as: 

 𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧) (1) 
 𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟) (2) 
 𝑐𝑐𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ[𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊(𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1) + 𝑏𝑏𝑐𝑐] (3) 
 𝑔𝑔𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑔𝑔) (4) 
 𝑖𝑖𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑡𝑡−1 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (5) 
 ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡)ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡𝑐𝑐𝑡𝑡 + 𝑔𝑔𝑡𝑡𝑖𝑖𝑡𝑡 (6) 
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Where σ and tanh are the sigmoid activation function and tanh activation function, W and b 
represent the weight matrix and bias vector, respectively. In the proposed Intention GRU 
network, the intention unit will update its state at each time step. The intention unit directly 
changes the output, which is consistent with the intention value that the pedestrian spatial 
movement depends on crossing the street. In Intention GRU, the intention state is continuously 
updated and used as input to the next Intention GRU neuron, the output response of each 
Intention GRU layer will also be used as the input of the next Intention GRU layer to affect 
future gates and units further. Therefore, Intention GRU can be applied in a pedestrian 
trajectory prediction method based on pedestrian past trajectory information and intention 
information cues. 
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Fig. 3. Structure diagram of our model. The red arrows in the diagram show progress only during 

training. 

3.2 Intention GRU for Pedestrian Trajectory Prediction 
Our model performs the multi-modal trajectory prediction based on pedestrian intention in a 
first-person view. The pedestrian trajectory in the past m frames is known, and the goal is to 
predict the pedestrian trajectory in the next n frames. As shown in Fig. 3, our model mainly 
comprises three parts: Intention Estimation Module, Sample Generation Module, and 
Trajectory Generation Module. Among them, the Intention estimation module is used to 
estimate and generate intention values for pedestrians; Sample generation module learns the 
distribution of future trajectories based on past pedestrian trajectories through a random latent 
variable in CVAE. This module will also generate multiple samples and estimate the endpoint 
of the pedestrian's future trajectory based on pedestrian intention; Trajectory generation 
module predicts pedestrian future trajectories based on the samples and the endpoint of 
pedestrian trajectories generated by the sample generation module and the intention values 
generated by the intention estimation module. Pedestrian bounding boxes can be represented 
by the pixel position and size as 𝑋𝑋𝑡𝑡 = [𝑥𝑥,𝑦𝑦,𝑤𝑤, ℎ] in the first-person view. The past pedestrian 
trajectory can be represented by 𝑿𝑿𝒕𝒕 = [𝑋𝑋𝑡𝑡−𝑚𝑚+1,𝑋𝑋𝑡𝑡−𝑚𝑚+2,⋯ ,𝑋𝑋𝑡𝑡], and the future pedestrian 
trajectory can be represented by 𝒀𝒀𝒕𝒕 = [𝑌𝑌𝑡𝑡+1,𝑌𝑌𝑡𝑡+2,⋯ ,𝑌𝑌𝑡𝑡+𝑛𝑛]. Given the observation trajectory 
𝑿𝑿𝒕𝒕 and the pedestrian environment clipping box, we estimate the pedestrian crossing intention 
to obtain the intention estimation value 𝑖𝑖𝑡𝑡  first. At the same time, the sample generation 
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module generates multiple sample Z based on the past trajectory, then estimates the endpoint 
𝐺𝐺𝑡𝑡 of the pedestrian trajectory by the intention value 𝑖𝑖𝑡𝑡 and sample Z, and finally predicts the 
pedestrian trajectory 𝒀𝒀𝒕𝒕 by the Bi-directional decoder composed of two Intention GRUs. In 
this section, we describe the details of our model (Fig. 3) in the following structure: Intention 
Estimation Module (Sec. 3.2.1), Sample Generation Module (Sec. 3.2.2), and Trajectory 
Generation Module (Sec. 3.2.3). 

3.2.1 Intention Estimation Module 
It has been shown that the visual information of pedestrian crossing intention is implied in the 
pedestrian-coded posture and direct local environment, and it implies the future movement of 
pedestrian, which helps predict the future pedestrian trajectory. Given the local visual context 
𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 = [𝐶𝐶𝑡𝑡−𝑚𝑚+1,𝐶𝐶𝑡𝑡−𝑚𝑚+2,⋯ ,𝐶𝐶𝑡𝑡] and the past trajectory of an observation pedestrian 𝑿𝑿𝒕𝒕 =
[𝑋𝑋𝑡𝑡−𝑚𝑚+1,𝑋𝑋𝑡𝑡−𝑚𝑚+2,⋯ ,𝑋𝑋𝑡𝑡], we define a binary classification task it∈{0,1} to predict whether 
pedestrians will cross the street, which represents the probability of pedestrians crossing the 
street, where 1 means pedestrians will cross, and 0 means they will not.  

For pedestrian intention estimation, we use an encoder-decoder structure, where 
ConvLSTM [46] network is the encoder and LSTM is the decoder. First, VGG16 [47] pre-
trained on ImageNet [48] is used to extract image features, then input the encoded features 
into the encoder, and finally input the encoder output of the encoder and past pedestrian 
trajectory Xt into the decoder, the intention value is then output by the decoder. We generate 
the intention values 𝑖𝑖𝑡𝑡

𝑓𝑓 of pedestrian at time t and 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏  of pedestrian at time t+n, respectively, 
and use them to predict pedestrian trajectories in sample generation module and trajectory 
prediction module. 

Algorithm 1 Workflow of Intention Estimation Module 
Input: Pedestrian past trajectory Xt, and visual context 
Output: 𝑖𝑖𝑡𝑡

𝑓𝑓, 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏 : Intention value at time t and time t+n 
1: for each step t do 
2:     Compute ℎ𝑡𝑡𝑥𝑥 from Xt by linear embedding 
3:     Get feature from visual context by VGG16 
4:     Compute ℎ𝑡𝑡𝑒𝑒  from feature by ConvLSTM encoder 
5:     Compute ℎ𝑡𝑡𝑖𝑖   from ℎ𝑡𝑡𝑒𝑒  and ℎ𝑡𝑡𝑥𝑥 by ConvLSTM decoder 
5:     Compute 𝑖𝑖𝑡𝑡

𝑓𝑓
  from ℎ𝑡𝑡𝑖𝑖  by fully connected layer 

6:     Estimate 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏 from ℎ𝑡𝑡𝑖𝑖  by MLP 
7: end for 
8: return  𝑖𝑖𝑡𝑡

𝑓𝑓, 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏  

3.2.2 Sample Generation Module  
The prediction of the future is inherently uncertain because there will be multiple credible 
future trajectories under the same observation sequence. Therefore, learning a deterministic 
function that directly maps 𝑿𝑿𝒕𝒕 to 𝒀𝒀𝒕𝒕 will not be sufficient to represent the potential prediction 
space. To deal with this uncertainty, we adopt a deep generative model, the Conditional 
Variational Automatic Encoder (CVAE). CVAE can learn the distribution 𝑃𝑃(𝒀𝒀𝒕𝒕|𝑿𝑿𝒕𝒕)  by 
introducing a random latent potential variable Z, where 𝑿𝑿𝒕𝒕 is the input and 𝒀𝒀𝒕𝒕 is the output. 
Our Sample Generation Module consists of prior network 𝑃𝑃𝜃𝜃(𝑍𝑍|𝑿𝑿𝒕𝒕) to model latent variable Z 
from the past pedestrian trajectory  𝑿𝑿𝒕𝒕 , recognition network 𝑄𝑄𝜑𝜑(𝑍𝑍|𝑿𝑿𝒕𝒕,𝒀𝒀𝒕𝒕)  to capture 
dependencies between Z and future pedestrian trajectory 𝒀𝒀𝒕𝒕 , and goal generation network 
𝑃𝑃𝜔𝜔(𝐺𝐺𝑡𝑡|𝑿𝑿𝒕𝒕, 𝑖𝑖𝑡𝑡

𝑓𝑓 ,𝑍𝑍) to generate the estimated target.  



1570            Youguo He et al.: Multi-modal Pedestrian Trajectory Prediction based on Pedestrian Intention for Intelligent Vehicle 

 

Prior net  

Recognition net

( )| tP Z X

( )| ,t tQ Z X Y
xh

yh

Zpσ

Zpµ

Zqµ

Zqσ

pZ

qZ

 
Fig. 4. Prior network and recognition network. The red arrows in the diagram show progress only 

during training. 
 

Train phase. The distribution of latent potential variable Z of the CVAE model is Gaussian 
distribution, 𝑍𝑍~𝑄𝑄𝜑𝜑(𝑍𝑍|𝑿𝑿𝒕𝒕,𝒀𝒀𝒕𝒕) = 𝑁𝑁(𝜇𝜇𝑍𝑍,𝜎𝜎𝑍𝑍) . First, the observation trajectory 𝑿𝑿𝒕𝒕  and the 
ground real goal 𝒀𝒀𝒕𝒕 are processed by GRU to obtain the hidden state ℎ𝑡𝑡𝑥𝑥  and ℎ𝑡𝑡

𝑦𝑦 . Then the 
recognition network 𝑄𝑄𝜑𝜑(𝑍𝑍|𝑿𝑿𝒕𝒕,𝒀𝒀𝒕𝒕)  uses ℎ𝑡𝑡𝑥𝑥  and ℎ𝑡𝑡

𝑦𝑦  to predict the distribution mean 𝜇𝜇𝑍𝑍𝑍𝑍 and 
standard deviation 𝜎𝜎𝑍𝑍𝑍𝑍 to learn the dependency between the observation and the real target. 
Prior network 𝑃𝑃𝜃𝜃(𝑍𝑍|𝑿𝑿𝒕𝒕) only uses ℎ𝑡𝑡𝑥𝑥  to predict 𝜇𝜇𝑍𝑍𝑍𝑍  and 𝜎𝜎𝑍𝑍𝑍𝑍 . Kullback–Leibler divergence 
(KLD) loss between 𝑁𝑁(𝜇𝜇𝑍𝑍𝑍𝑍,𝜎𝜎𝑍𝑍𝑍𝑍) and 𝑁𝑁(𝜇𝜇𝑍𝑍𝑍𝑍 ,𝜎𝜎𝑍𝑍𝑍𝑍) is optimized so that the priori network 
learns the dependency between 𝒀𝒀𝒕𝒕 and 𝑿𝑿𝒕𝒕. Z is sampled from 𝑁𝑁(𝜇𝜇𝑍𝑍𝑍𝑍 ,𝜎𝜎𝑍𝑍𝑍𝑍) and connected with 
the observation trajectory code ℎ𝑡𝑡𝑥𝑥 and the result of intention estimation 𝑖𝑖𝑡𝑡

𝑓𝑓 to predict multi-
modal goals 𝐺𝐺�𝑡𝑡 by the goal generation network. We use 3-layer multi-layer perceptrons (MLPs) 
for prior, recognition and goal generation network. 
Test phase. At the time of the test, the ground truth future trajectory 𝒀𝒀𝒕𝒕 cannot be obtained, 
so we extracted samples from 𝑁𝑁(𝜇𝜇𝑍𝑍𝑍𝑍,𝜎𝜎𝑍𝑍𝑍𝑍) and connected the observation trajectory encode 
ℎ𝑡𝑡𝑥𝑥 and the result of intention estimation 𝑖𝑖𝑡𝑡

𝑓𝑓 to predict the estimated endpoint of trajectory 𝐺𝐺�𝑡𝑡. 

Algorithm 2 Workflow of Sample Generation Module 
Input: Pedestrian past trajectory Xt, and intention value 𝑖𝑖𝑡𝑡

𝑓𝑓 
Output: Hidden state ℎ𝑡𝑡

𝑓𝑓, and estimated endpoint of trajectory 𝐺𝐺�𝑡𝑡 
1: for each step t do 
2:     Compute xt  from Xt by linear embedding 
3:     Compute ℎ𝑡𝑡𝑥𝑥  by GRU 
4:     CVAE takes ℎ𝑡𝑡𝑥𝑥  and sample Z proposals of ℎ𝑡𝑡

𝑓𝑓 
5:     Compute 𝐺𝐺�𝑡𝑡  from ℎ𝑡𝑡

𝑓𝑓 and 𝑖𝑖𝑡𝑡
𝑓𝑓 by MLP 

6: end for 
7: return  ℎ𝑡𝑡

𝑓𝑓 ,  𝐺𝐺�𝑡𝑡 

3.2.3 Trajectory Generation Module  
The input of the Trajectory Generation Module is the estimated endpoint of trajectory 𝐺𝐺�𝑡𝑡 , 
hidden state ℎ𝑡𝑡

𝑓𝑓  and intention value 𝑖𝑖𝑡𝑡
𝑓𝑓  and 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏 , the output is the predicted pedestrian 

trajectory 𝑌𝑌�𝑡𝑡. In this module, the estimated endpoint of trajectory 𝐺𝐺�𝑡𝑡 generates a hidden state 
ℎ𝑡𝑡+𝑛𝑛𝑏𝑏  through a fully connected layer. We use the intention GRU in both forward and backward 
directions to construct a bidirectional trajectory predictor to reduce the error in long-term 
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prediction. The forward trajectory predictor generates ℎ𝑡𝑡+1
𝑓𝑓 , ℎ𝑡𝑡+2

𝑓𝑓  ,,, ℎ𝑡𝑡+𝑛𝑛−1
𝑓𝑓  and 𝑖𝑖𝑡𝑡+1

𝑓𝑓 , 𝑖𝑖𝑡𝑡+2
𝑓𝑓  ,,, 

𝑖𝑖𝑡𝑡+𝑛𝑛−1
𝑓𝑓  through the hidden state ℎ𝑡𝑡

𝑓𝑓and intention value 𝑖𝑖𝑡𝑡
𝑓𝑓 as formulas (5) and (6), while the 

backward trajectory predictor generates ℎ𝑡𝑡+𝑛𝑛−1𝑏𝑏 , ℎ𝑡𝑡+𝑛𝑛−2𝑏𝑏  ,,, ℎ𝑡𝑡+1𝑏𝑏  and 𝑖𝑖𝑡𝑡+𝑛𝑛−1𝑏𝑏 , 𝑖𝑖𝑡𝑡+𝑛𝑛−2𝑏𝑏  ,,, 𝑖𝑖𝑡𝑡+1𝑏𝑏  
through the hidden state ℎ𝑡𝑡+𝑛𝑛𝑏𝑏  and intention value 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏  as formulas (5) and (6). Then, ℎ𝑓𝑓 and 
ℎ𝑏𝑏  at the same time step in both directions are connected to predict future pedestrian 
trajectories. These steps can be expressed by the formula: 

ℎ𝑡𝑡+1
𝑓𝑓 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓(ℎ𝑡𝑡

𝑓𝑓, 𝑖𝑖𝑡𝑡
𝑓𝑓,𝑊𝑊𝑓𝑓ℎ𝑡𝑡

𝑓𝑓 + 𝑏𝑏𝑓𝑓) (7) 

ℎ𝑡𝑡+𝑛𝑛−1𝑏𝑏 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏(ℎ𝑡𝑡+𝑛𝑛𝑏𝑏 , 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏 ,𝑊𝑊𝑏𝑏ℎ𝑡𝑡+𝑛𝑛
𝑏𝑏 + 𝑏𝑏𝑏𝑏) (8) 

𝑌𝑌�𝑡𝑡+𝑛𝑛−1 = 𝑊𝑊𝑓𝑓ℎ𝑡𝑡+𝑛𝑛−1
𝑓𝑓 + 𝑊𝑊𝑏𝑏ℎ𝑡𝑡+𝑛𝑛−1𝑏𝑏 + 𝑏𝑏 (9) 

where, f, b, W, and b indicate “forward”, “backward”, weight matrix, and bias vector, 
respectively. 
 

Algorithm 3 Workflow of Trajectory Generation Module 
Input: Intention value 𝑖𝑖𝑡𝑡

𝑓𝑓and 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏  , hidden state ℎ𝑡𝑡
𝑓𝑓 and estimated endpoint of trajectory 𝐺𝐺�𝑡𝑡  

Output: Future trajectory 𝒀𝒀�𝒕𝒕 
1: for each step t do 
2:     Compute ℎ𝑡𝑡+𝑛𝑛𝑏𝑏  from  𝐺𝐺�𝑡𝑡  by fully connected layer 
3:     Compute 𝑖𝑖𝑡𝑡+1

𝑓𝑓  from ℎ𝑡𝑡
𝑓𝑓 and 𝑖𝑖𝑡𝑡

𝑓𝑓 by forward Intention GRU as (5) 
4:     Compute ℎ𝑡𝑡+1

𝑓𝑓
 from ℎ𝑡𝑡

𝑓𝑓 and 𝑖𝑖𝑡𝑡
𝑓𝑓 by forward Intention GRU as (7) 

5:     Compute 𝑖𝑖𝑡𝑡+𝑛𝑛−1𝑏𝑏
 from ℎ𝑡𝑡+𝑛𝑛𝑏𝑏  and  𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏  by backward Intention GRU as (5) 

6:     Compute ℎ𝑡𝑡+𝑛𝑛−1𝑏𝑏
 from ℎ𝑡𝑡+𝑛𝑛𝑏𝑏  and 𝑖𝑖𝑡𝑡+𝑛𝑛𝑏𝑏 by forward Intention GRU as (8) 

7: end for 
8: concatenate the same time step ℎ𝑓𝑓 and ℎ𝑏𝑏  to predict trajectory 𝒀𝒀�𝒕𝒕 as (9) 
9: return 𝒀𝒀�𝒕𝒕 

3.2.4 Loss Functions 

Our model is based on residual 𝑌𝑌� t+n=Yt+n-Xt predicts the change of the current position. 
Compared with the direct prediction of the future position [16] or the integration from the 
prediction of the future speed [44], the residual prediction can provide less initial loss than the 
predicted position from the beginning. We use L2 loss between prediction and target to 
represent CVAE loss [42] and adapt the best-of-many (BoM) [49] method to minimize the 
distance between the best prediction and target. This method will produce more accurate and 
diversified predictions and encourage models to capture real changes in data. We use a binary 
cross-entropy function when training the Intention Estimation Module. So the loss function of 
the model is the combination of target L2 loss, trajectory L2 loss, KLD loss between prior 
network and recognition network of CVAE, and Binary Cross Entropy Loss for intention 
estimation, which can be expressed by the formula: 

𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝑁𝑁

��𝐺𝐺𝑡𝑡 − 𝑋𝑋𝑡𝑡 − 𝐺𝐺�𝑡𝑡𝑖𝑖�� + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝑁𝑁

� ��𝑌𝑌𝑚𝑚 − 𝑋𝑋𝑡𝑡 − 𝑌𝑌�𝑚𝑚𝑖𝑖 ��
𝑡𝑡+𝑛𝑛

𝑚𝑚=𝑡𝑡+1
+ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑄𝑄𝜑𝜑(𝑍𝑍|𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡),𝑃𝑃𝜃𝜃(𝑍𝑍|𝑋𝑋𝑡𝑡) )

−  
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦�𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦�𝑖𝑖))
𝑁𝑁

𝑖𝑖=1

 

(10) 
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where 𝐺𝐺�𝑡𝑡 and 𝑌𝑌�𝑚𝑚 are the estimated goals and trajectory path points relative to current position 
Xt.  𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 represents the actual pedestrian intention and the estimated pedestrian intention. 

4. Experiments 

4.1 Datasets 
Pedestrian Intention Estimation (PIE) [16]. A dataset suitable for automatic driving tasks 
for first-person view, including video clips of more than 6 hours of crosswalks in various types, 
all of which are taken by on-board cameras. This dataset has long traditions and more 
comprehensive annotations such as semantic content, ego-motion, and neighbor objects. The 
PIE dataset also provides information such as road boundaries required for traffic visual tasks. 
There are 1842 pedestrian samples in this dataset, and the proportions of train, test, and 
validation sets are 50%, 40%, and 10%, respectively. Tracks are sampled at an overlap rate of 
0.5.  
Joint Attention for Autonomous Driving (JAAD) [50]. JAAD contains 2800 pedestrian 
tracks, all of which were taken by a 30 Hz dash cam. This dataset contains various traffic 
scenes, videos under light and weather conditions, and provides a basis for studying the 
behavior of pedestrians and vehicles. The number of samples in this dataset is less than PIE 
and the track is shorter, so tracks are sampled at an overlap rate of 0.8. We use the same 
train/test segmentation as [16]. 

4.2 Implementation 
Intention Estimation. For the encoder, a ConvLSTM with 64 filters and kernel size of 2 × 2 
with stride 1 was used; and we used a LSTM with tanh activation,128 hidden units, dropout 
of 0.4, and recurrent dropout of 0.2 as the encoder. The image features are encoded using 
VGG16 pre-trained on ImageNet. For visual information, the input is the context of the image 
around pedestrians, which is clipped to twice the size of the pedestrian bounding box and 
resized to 224 × 224.  
Trajectory Prediction. We implement our model in PyTorch and use a single NVIDIA 
GeForce RTX 3060 Laptop GPU to complete all our experiments. The observation and 
prediction horizon lengths are set to 0.5s (15 frames) and 1.5s (45 frames), respectively. The 
hidden size of the model is 256 and set the batch size to 64, learning rate 0.001, an exponential 
LR schedule [41], and the training is terminated after 50 epochs. We set the number of 
pedestrian trajectories generated by the model to 20. The sizes of the parameters in the model 
are shown in Table 1. 

Table 1. The sizes of the parameters in the model. Among them, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓 and 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏  represent the outputs of Intention GRU in both positive and negative directions, 

respectively. 
Parameter size 

𝑿𝑿𝒕𝒕 64×15×4 
𝒀𝒀𝒕𝒕 64×45×4 
Z 64×20×32 
G 64×20×4 
𝑖𝑖𝑓𝑓 64×20×256 
𝑖𝑖𝑏𝑏 64×20×256 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 6, June 2024                                 1573 

ℎ𝑓𝑓 64×20×256 
ℎ𝑏𝑏  64×20×256 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓 64×45×20×4 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏  64×45×20×4 

𝒀𝒀�𝒕𝒕 45×20×4 

4.3 Evaluation Metrics 
For results of trajectory prediction, following [16,17,21], we report the following metrics: 1) 
Mean squared error (MSE) over bounding box coordinates, 2) Center mean squared error 
(CMSE), which is the average MSE of the center of the bounding boxes, and 3) center final 
mean squared error (CFMSE), which indicates the CMSE of the last time (t+n). For our multi-
modal, we report the best-of-20 results (Minimum MSE, CMSE, and CFMSE of 20 random 
trajectories), following [42,44,51]. For the estimation results of pedestrian goal, we report its 
MSE and CMSE on the PIE dataset. For all metrics, the lower the value, the smaller the 
prediction error. 

4.4 Comparison to State-of-the-Art 

4.4.1. Comparison results of trajectory endpoint estimation 
The input of the reverse trajectory predictor in the trajectory prediction module is the trajectory 
endpoint predicted by the sample generation module, so improving the accuracy of the 
predicted trajectory endpoint has a positive significance in reducing the error of the final 
trajectory. We conducted a comparative experiment on the PIE dataset to investigate the 
impact of pedestrian intention information on the estimated trajectory endpoint. Fig. 5 shows 
the errors of trajectory endpoint estimation with/without intention during training. Table 2 
shows the experimental results in the test set. We can see that after incorporating intention, the 
MSE performance of the estimated target improved by 23.9% (from 176 to 134) compared to 
the model without intention information, and the CMSE performance improved by 17.1% 
(from 146 to 121) compared to the model without intention information. Therefore, 
introducing pedestrian intention information helps to estimate the endpoint of pedestrian 
trajectories. 

 
 

Fig. 5. Error of trajectory endpoint estimation with/without intention during training on the PIE. 
dataset. 

Table 2. The error pedestrian goal estimation on the PIE dataset. 
Methods MSE CMSE 
Without intention 176 146 
With intention 134 121 
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Table 3. Prediction error on multiple future time steps of different methods on PIE and JAAD datasets. 

 
Methods 

PIE JAAD 

MSE CMSE CFMSE MSE CMSE CFMSE 

0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s 

B-LSTM [52] 101/296/855 811 3258 159/539/1535 1447 5615 

PIEtraj [16] 58/200/636 596 2477 110/399/1248 1183 4780 

Holistic LSTM [17] 56/167/507 466 1917 105/389/1177 1116 4493 

FOL-X [53] 47/183/584 546 2303 147/484/1374 1290 4924 

BiTraP-D [19] 41/161/511 481 1949 93/378/1206 1105 4565 

Model-D 38/157/503 480 1993 89/364/1189 1095 4531 

BiTraP-GMM[19] 38/94/222 171 368 153/250/585 501 998 

BiTraP-NP [19] 23/48/102 81 261 38/94/222 177 565 

Ours(20) 16/40/92 67 201 32/80/192 157 502 

4.4.2. Comparison results of trajectory prediction 
Table 3 shows the comparison between our model and advanced methods. We also show 

our deterministic model Model-D, which removes the multi-modal CVAE module compared 
to the multi-modal method. Among the above methods, only BiTraP-NP and BiTraP-GMM 
are multi-modal, and others are deterministic. As shown in Table 3, our deterministic method 
has achieved advanced results; for multi-modal methods, our multi-modal results are superior 
to other methods in all benchmarks. On the PIE dataset, our performance on MSE0.5s is 30% 
higher than that of BiTraP-NP (from 23 to 16). In addition, our result is better than BiTraP-
NP (9.8%) in a long-time prediction on MSE1.5s (from 102 to 92). For the JAAD dataset, we 
improved the performance on MSE0.5s from 38 to 32 and on MSE1.5s from 222 to 192. The 
experiment results show that pedestrian intention information helps predict pedestrian 
trajectory and proves that our model is more capable of short-term and long-term prediction. 

Table 4. Results of ablation studies. 

Methods MSE CMSE CFMSE 
0.5s 1s 1.5s 1.5s 1.5s 

loc 30 63 121 105 379 
loc + int 19 46 117 98 333 
loc + BTP 23 48 102 81 261 
loc + int + BTP 18 45 98 75 231 
loc + int + Intention GRU 19 44 97 77 234 
loc + int + Intention GRU + BTP 16 40 92 67 201 

4.5 Ablation Studies 
In order to understand how pedestrian intention information, intention GRU, and bidirectional 
trajectory predictor affect the performance of pedestrian trajectory prediction, we conducted 
ablation studies on the PIE dataset. We will set the model that only uses pedestrian past 
trajectories as input and the trajectory generation module is a unidirectional traditional GRU 
as “loc”, where “int” indicates adding pedestrian intentions to the input. “BTP” indicates the 
use of a bidirectional trajectory predictor in the trajectory generation module, and “Intention 
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GRU” indicates the use of Intention GRU in the trajectory generation module. Fig. 6 shows 
the changes in various indicators during training using various methods. Table 4 shows the 
experimental results of various methods on the test set. We observe that the error of the loc 
method is the largest in all indicators. After integrating pedestrian intentions, the error 
decreases, especially in the short term. MSE0.5s decreased from 30 to 19 (a decrease of 36.7%), 
while in the long term, intention has little effect on improving model performance. This is 
because the estimated pedestrian intentions are only the thoughts of pedestrians in the short 
term, and pedestrian intentions may change in the subsequent time. loc+BTP reduced MSE1.5s, 
CMSE1.5s, and CFMSE1.5s from 121, 105, and 379 to 102, 81, and 261, indicating that using a 
bidirectional trajectory predictor can indeed reduce errors in long-term prediction. By 
comparing loc+int and loc+int+Intention GRU, we can observe that the prediction error is 
significantly reduced in long-term prediction after using Intention GRU. Specifically, MSE1.5s, 
CMSE1.5s, and CFMSE1.5s decreased from 117, 98 and 333 to 97, 77 and 234, a decrease of 17.1%, 
21.4% and 29.7%. This is because our Intention GRU can change the intention value of each 
prediction step instead of a constant intention value to predict trajectories. Our complete model, 
loc+int+Intention GRU+BTP, achieved the best performance in all indicators. The results of 
the ablation experiment demonstrate the effectiveness of our method. In summary, adding 
pedestrian intention information to the input can reduce prediction errors in the short term. 
Intention GRU can dynamically estimate pedestrian intentions for each prediction step, 
thereby improving the impact of pedestrian intentions on long-term prediction. The 
bidirectional trajectory predictor can improve the performance of the model in long-term 
prediction.  
 

 
 

(a) (b) 

 
 

(c) (d) 
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(e)  

 

Fig. 6. The error changes of various methods during training. 
 

4.6 Visualization 
In order to express our experimental results intuitively, we show several visual predictions of 
our model on the PIE dataset in Fig. 7. We use a box to represent the position of pedestrians 
1.5 seconds later, and lines of points represent the pedestrian trajectory within 1.5 seconds. 
The dark blue represents the observation pedestrian trajectory, the red represents the ground 
truth future, and the green represents the predicted trajectory. 

As we can see in Fig. 7(a) and Fig. 7(b), a pedestrian has an intention to cross the street in 
the next few seconds. The deterministic method cannot directly reflect the crossing behavior, 
while the multi-modal method can predict a variety of possible trajectories, including two 
trajectories crossing the street, and the distribution of trajectories also indicates that the 
pedestrian will cross the street. In Fig. 7(c), Fig. 7(d), Fig. 7(e), and Fig.7(f) the pedestrian 
bounding boxes predicted by the multimodal approach are mostly in proximity to the true 
bounding boxes. Although our multimodal method predicts multiple trajectories, the predicted 
trajectories have a higher distribution near the actual trajectories. This demonstrates the 
effectiveness of the trajectories predicted by the multimodal approach. The multi-modal 
method can predict multiple trajectories and clearly show the future pedestrian trajectory 
distribution. Therefore, the multi-modal method can obtain more reasonable trajectories than 
the deterministic method so that intelligent vehicles can better predict risks and ensure 
pedestrian safety. Our multi-modal method predicts multiple trajectories, which is consistent 
with pedestrian having multiple reasonable trajectories in the future. 

 

   
(a) (b) 
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(c) (d) 

   
(e) (f) 

 

Fig. 7. Our visualization results are shown in the figure. The left column are the deterministic results, 
and the right column are the multi-modal results. The dark blue, red and green represent the pedestrian 

past trajectories, the future real trajectories, and the prediction trajectories, respectively. 

5. Conclusion 
In this paper, we propose a multi-modal goal-conditioned pedestrian trajectory prediction 
model that utilizes past pedestrian trajectory and dynamic pedestrian intentions to generate 
multi-modal pedestrian trajectories. We introduce the Intention GRU, which is a dynamic 
learning mechanism that can capture pedestrian intentions throughout the entire prediction 
process, enabling the model to identify pedestrian intention at each time step. At the same time, 
we use two directional Intention GRUs to form a bidirectional trajectory predictor to reduce 
the model’s error in long-term prediction. Our experimental results on two first-perspective 
datasets show that combining pedestrian intention information significantly improves the 
performance of the model in short-term prediction, while reducing errors in estimating 
pedestrian trajectory endpoints, thereby improving overall model performance. Intention GRU 
allows the model to achieve state-of-the-art performance in both short-term and long-term 
predictions. Our method can improve the accuracy of pedestrian trajectory prediction in 
intelligent driving systems and ultimately contribute to the broader goal of improving overall 
traffic safety. However, our work has not fully exploited pedestrian information. Future work 
could explore the integration of additional pedestrian cues, such as facial expressions and 
walking postures, to better predict pedestrian behavior and improve the accuracy of trajectory 
prediction. Additionally, the model can be extended to incorporate environmental factors, such 
as traffic signals, providing a more comprehensive approach to trajectory prediction.  
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