• 제목/요약/키워드: fusing model.

검색결과 74건 처리시간 0.017초

Apache Spark를 활용한 실시간 주가 예측 (Real-Time Stock Price Prediction using Apache Spark)

  • 신동진;황승연;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.79-84
    • /
    • 2023
  • 최근 분산 및 병렬 처리 기술 중 빠른 처리 속도를 제공하는 Apache Spark는 실시간 기능 및 머신러닝 기능을 제공하고 있다. 이러한 기능에 대한 공식 문서 가이드가 제공되고 있지만, 기능들을 융합하여 실시간으로 특정 값을 예측하는 방안은 제공되고 있지 않다. 따라서 본 논문에서는 이러한 기능들을 융합하여 실시간으로 데이터의 값을 예측할 수 있는 연구를 진행했다. 전체적인 구성은 Python 프로그래밍 언어에서 제공하는 주가 데이터를 다운로드하여 수집한다. 그리고 머신러닝 기능을 통해 회귀분석의 모델을 생성하고, 실시간 스트리밍 기능을 머신러닝 기능과 융합하여 실시간으로 주가 데이터 중 조정종가를 예측한다.

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

USBL, DVL과 선수각 측정신호를 융합한 심해 무인잠수정의 항법시스템 (Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements)

  • 이판묵;심형원;백혁;김방현;박진영;전봉환;유승열
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.315-323
    • /
    • 2017
  • This paper presents an integrated navigation system that combines ultra-short baseline (USBL), Doppler velocity log (DVL), and heading measurements for a deep-sea remotely operated vehicle, Hemire. A navigation model is introduced based on the kinematic relation of the position and velocity. The system states are predicted using the navigation model and corrected with the USBL, DVL, and heading measurements using the Kalman filter. The performance of the navigation system was confirmed through re-navigation simulations with the measured data at the Southern Mariana Arc submarine volcanoes. Based on the characteristics of the measurements, the design process for the parameters of the system modeling error covariance, measurement error covariance, and initial error covariance are presented. This paper reviews the influence of the outliers and blackout of the USBL and DVL measurements, and proposes an outlier rejection algorithm that is robust to USBL blackout. The effectiveness of the method is demonstrated with re-navigation for the data that includes USBL blackouts.

2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘 (Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method)

  • 최재완;김대성;이병길;유기윤;김용일
    • 대한원격탐사학회지
    • /
    • 제22권4호
    • /
    • pp.295-304
    • /
    • 2006
  • 영상융합은 "특정 알고리즘의 사용을 통해 두 개 혹은 그 이상의 서로 다른 영상을 조합하여 새로운 영상을 만들어내는 것"을 뜻하며 원격탐사에서는 주로 낮은 공간해상도의 멀티스펙트럴 영상과 높은 공간해상도의 흑백영상을 융합하여 높은 공간해상도의 멀티스펙트럴 영상을 생성하는 것을 의미한다. 일반적으로 하이퍼스펙트럴 영상융합을 위해서는 기존의 멀티스펙트럴 영상융합 기법을 이용한 방법이나 분광혼합기법을 이용한 방법을 사용한다. 전자의 경우에는 분광정보가 손실될 가능성이 높으며, 후자의 경우는, endmember의 정보나 부가적인 데이터가 필요하고 결과 영상의 경우 공간적 정보가 상대적으로 부정확한 문제점을 보인다. 따라서 본 연구에서는 하이퍼스펙트럴 영상의 분광특성을 보존하기 위한 융합방법으로서 2단계 분광혼합기법을 사용한 영상융합 알고리즘을 제안하였으며 이를 실제 Hyperion, ALI 영상에 적용하여 평가하였다. 이를 통해 제안한 알고리즘에 의해서 융합된 결과가 PCA, GS 융합기법에 비해서 높은 공간, 분광 해상도를 유지할 수 있음을 보여주었다.

UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현 (3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR)

  • 한승희;강준오;오성종;이용창
    • 도시과학
    • /
    • 제7권2호
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교 (Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring)

  • 김예슬;박노욱
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1209-1219
    • /
    • 2019
  • 지속적인 식생 모니터링을 위해서는 다중 위성자료의 시간 및 공간해상도의 상호 보완적 특성을 융합한 높은 시공간해상도에서의 식생지수 생성이 필요하다. 이 연구에서는 식생 모니터링에서 다중 위성자료의 시공간 융합 모델에 따른 시계열 변화 정보의 예측 정확도를 정성적, 정량적으로 분석하였다. 융합 모델로는 식생 모니터링 연구에 많이 적용되었던 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM)과 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM)을 비교하였다. 예측 정확도의 정량적 평가를 위해 시간해상도가 높은 MODIS 자료를 이용해 모의자료를 생성하고, 이를 입력자료로 사용하였다. 실험 결과, ESTARFM에서 시계열 변화 정보에 대한 예측 정확성이 STARFM보다 높은 것으로 나타났다. 그러나 예측시기와 다중 위성자료의 동시 획득시기의 차이가 커질수록 STARFM과 ESTARFM 모두 예측 정확성이 저하되었다. 이러한 결과는 예측 정확성을 향상시키기 위해서는 예측시기와 가까운 시기의 다중 위성자료를 이용해야 함을 의미한다. 광학영상의 제한적 이용을 고려한다면, 식생 모니터링을 위해 이 연구의 제안점을 반영한 개선된 시공간 융합 모델 개발이 필요하다.

지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석 (Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics)

  • 김종성;이정우
    • 대한환경공학회지
    • /
    • 제38권10호
    • /
    • pp.551-557
    • /
    • 2016
  • 여러 환경요인을 예측하는데 위성영상과 측정데이터의 접목은 정확도를 향상시킬 수 있는 잠재력을 가지고 있다. 하지만 습지 토양에 포함되어있는 영양염류의 성분 등을 예측함에 있어 위성영상의 활용 효과는 잘 알려져 있지 않다. 따라서, 본 연구에서는 지구통계학 중 블록크리깅과 회귀크리깅을 자연습지인 에버글레이드에 위치한 수자원관리유역의 토양 내 총인 예측에 적용하였다. 토양시료의 측정된 총인농도를 이용하여 블록크리깅을, 측정값 외에 30 m의 공간해상도를 가지고 있는 위성영상인 Landsat ETM+로부터 추출한 스펙트럼 데이터 및 분광지수 등을 독립변인으로 하여 회귀크리깅을 실시한 결과, 블록크리깅의 결정계수는 0.59, 회귀크리깅의 결정계수는 0.49로 나타났다. 측정 자료만을 이용한 블록크리깅의 예측 오차가 위성영상을 이용한 회귀크리깅의 예측 오차보다 더 작았으나, 각각의 방법을 이용하여 총인 농도를 수자원관리유역에 매핑한 결과 두 경우 모두 비슷한 경향을 보였고, 회귀크리깅의 경우 연구대상유역의 독특하고 복잡한 경관요소들을 더욱 잘 표현할 수 있었다.

고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구 (Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images)

  • 김예슬;이광재;이선구
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.1931-1942
    • /
    • 2021
  • 최근 고해상도 광학 위성영상의 활용성이 강조되면서 이를 이용한 지표 모니터링 연구가 활발히 수행되고 있다. 그러나 고해상도 위성영상은 낮은 시간 해상도에서 획득되기 때문에 그 활용성에 한계가 있다. 이러한 한계를 보완하기 위해 서로 다른 시간 및 공간 해상도를 갖는 다중 위성영상을 융합해 높은 시공간 해상도의 합성 영상을 생성하는 시공간 자료 융합을 적용할 수 있다. 기존 연구에서는 중저해상도의 위성영상을 대상으로 시공간 융합 모델이 개발되어 왔기 때문에 고해상도 위성영상에 대한 기개발된 융합 모델의 적용성을 평가할 필요가 있다. 이를 위해 이 연구에서는 KOMPSAT-3A 영상과 Sentinel-2 영상을 대상으로 기개발된 시공간 융합 모델의 적용성을 평가하였다. 여기에는 예측을 위해 사용하는 정보가 다른 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)과 Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM)을 적용하였다. 연구 결과, 시간적으로 연속적인 반사율 값을 결합하는 STGDFM의 예측 성능이 ESTARFM 보다 높은 것으로 나타났다. 특히 KOMPSAT 영상의 낮은 시간 해상도로 같은 시기에서 KOMPSAT 및 Sentinel-2 영상을 동시에 획득하기 어려운 경우, STGDFM의 예측 성능 향상이 더욱 크게 나타났다. 본 실험 결과를 통해 연속적인 시간 정보를 결합해 상대적으로 높은 예측 성능을 가지는 STGDFM을 이용해 낮은 재방문 주기로 인한 고해상도 위성영상의 한계를 보완할 수 있음을 확인하였다.

인덱스를 이용한 동영상과 센싱 데이터 융합 방안 연구 (A Study of Fusing Scheme of Image and Sensing Data Using Index Method)

  • 현진규;이영수;김도현
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.141-146
    • /
    • 2008
  • 최근 OGC(Open Geospatial Consortium)의 센서 웹에서는 센서 네트워크에서 수집된 센싱 데이터 및 영상 정보를 저장하고 관리하여 인터넷을 통해 사용자들에게 제공하는 연구가 진행되고 있다. 이와 같은 센싱 데이터 및 영상 정보를 실시간적으로 사용자에게 전달하기 위해서는 센싱 데이터를 비롯하여 오디오 및 비디오를 하나로 묶는 데이터 융합에 대한 연구가 필요하다. 이에 본 논문에서는 센서 네트워크에서 수집된 센싱 데이터와 영상을 인덱스를 이용하여 융합하는 방안을 제시한다. 이 방안에서는 동일한 노드에서 수집된 센싱 데이터와 영상의 식별 정보를 통합 인덱스에 함께 표시하고, 이를 통해 사용자가 질의할 경우 통합 인덱스를 참조하여 센싱 데이터와 영상을 동시에 제공한다. 제안된 방안을 검증하기 위해 센서 네트워크와 영상장치를 이용하여 실시간 멀티미디어 서비스 구조를 설계하고 인덱스 기반의 영상과 센서 데이터를 통합한 유비쿼터스 실시간 멀티미디어 시스템을 설계하고 구현한다. 이를 통하여 제안된 데이터 융합 방안이 영상 장치와 무선 센서 네트워크로부터 수집되는 영상과 센싱 데이터를 통합 인덱스를 이용하여 응용 서비스의 정보 요청에 따라 실시간 멀티미디어 서비스를 제공하는 것을 확인하였다.

  • PDF